
Teaching Composition Quality at Scale

Human Judgment in the Age of Autograders

John DeNero
Computer Science Division

University of California, Berkeley
Berkeley, CA

denero@cs.berkeley.edu

Stephen Martinis
Computer Science Division

University of California, Berkeley
Berkeley, CA

stephenmartinis@gmail.com

ABSTRACT
We describe an effort to improve the composition quality of
student programs: the property that a program can be un-
derstood effectively by another person. As a semester-long
component of UC Berkeley’s first course for majors, CS 61A,
we gave students composition guidelines, scores, and quali-
tative feedback—all generated manually by a course staff of
10 graders for over 700 students.

To facilitate this effort, we created a new online tool that
allows instructors to provide feedback efficiently at scale.
Our system differs from recently developed alternatives in
that it is a branch of an industrial tool originally developed
for internal code reviews at Google and used extensively
by the open-source community. We found that many of
the features designed for industrial applications are well-
suited for instructional use as well. We extended the system
with permissions controls and comment memories tailored
for giving educational feedback.

Using this tool improved the consistency of the feedback
we gave to students, the efficiency of generating that feed-
back, and our ability to communicate that feedback to stu-
dents. Emphasizing composition throughout the course im-
proved the composition of our students’ code. The quality
of student programs improved by a statistically significant
margin (p < 0.01) over those from a previous semester, mea-
sured by a blind comparison of student submissions.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]

General Terms
Human Factors

Keywords
Introductory Programming, Web-Based Feedback

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2605-6/14/03 $15.00.
http://dx.doi.org/10.1145/2538862.2538976.

1. INTRODUCTION
For the programs used most widely in the world, their

source code is read by many developers. By contrast, stu-
dent assignments are typically read at most once by an in-
structor. In large courses, evaluations of correctness are per-
formed most efficiently by scripts, rather than instructors,
as the effort of autograder development is amortized across
a large number of students [4]. Although autograding has
tremendous benefits [11, 7, 6], it can potentially deemphasize
the importance of writing programs that other people can
understand. This paper describes a software tool and associ-
ated policies that mitigate this effect by explicitly promoting
composition quality—that entirely subjective property of a
program that it can be understood easily by a person.

Efforts to encourage students to write comprehensible pro-
grams can be traced back through decades of computer sci-
ence education (e.g., [1]). Teaching composition quality nec-
essarily involves manual feedback—a fellow human is the
best judge of whether a program can be understood by peo-
ple. In CS 61A, UC Berkeley’s first course for majors, we
have always provided some manual feedback. In Fall 2012,
we improved this component of the course by developing a
software tool that manages the feedback work flow in tan-
dem with autograding scripts that perform correctness eval-
uation. The tool was designed to scale to large courses. In
CS 61A, more than 3000 project submissions from more than
700 students were evaluated by 10 student graders.

Our web-based tool is designed to promote consistent eval-
uation, an efficient process, and smooth communication with
students. It is a branch of an existing industrial tool and
therefore includes many features originally designed for a
professional setting, such as integration with multiple ver-
sion control systems. We extended the open-source Rietveld1

project, which was originally developed for code reviews at
Google and is used widely in the open-source developer com-
munity. We found many features of this system to be useful
for providing feedback at scale, such as difference visualiza-
tion, threaded conversations, file navigation, versioning, the
ability to save drafts, and email generation. Our branch
of the tool also includes a permissions model and comment
sharing mechanism designed for giving composition feedback
to students. Our code review tool2 and its source code3 are
publicly available for general use.

Our purpose in using this tool was to improve the compo-
sition quality of student programs. To measure this effect,

1http://code.google.com/p/rietveld
2http://composingprograms.com/codereview.html
3http://github.com/moowiz/ucb-codereview

http://code.google.com/p/rietveld
http://composingprograms.com/codereview.html
http://github.com/moowiz/ucb-codereview

we asked a group of advanced undergraduate judges to com-
pare student submissions across semesters, before and after
introducing this new tool. Results of a blind and random-
ized survey show that quality improved by a statistically sig-
nificant margin for submissions from students who received
online composition feedback, compared to those from a year
before when students instead received comments on print-
outs of their submissions.

2. RELATED WORK
Web-based feedback mechanisms have provided substan-

tial benefit to many CS courses. Our tool shares key fea-
tures of successful previous systems, such as the ability to
give comments inline with the source code [5] and also allow-
ing summary comments [10]. Because it extends the existing
open-source tool Rietveld that is maintained by a large team
of 16 committers, our tool also contains a breadth of addi-
tional features. For example, it integrates with Mercurial,
Subversion, Git, Perforce, and CVS. Its user interface au-
tomatically collapses long stretches of matched lines. Key-
board shortcuts are implemented for file and comment nav-
igation. Submissions are indexed and searchable through
both a web form and a JSON-based REST API. Perhaps
most importantly, common tasks such as deployment and
uploading are fully documented on the Rietveld Wiki4 pages.

Evaluations of past systems have shown improvements in
course staff experience with the use of a web-based feedback
tool. For example, MacWilliam and Malan [10] found that
the total time required to provide feedback was substantially
reduced with a web-based system over a PDF-based process.
Likewise, Jones and Jamieson [8] report faster grading times
with a web-based system. Bridge and Appleyard [2] report
giving faster feedback to students.

Student experience has also been shown to improve with
online submission and feedback. For instance, Bridge and
Appleyard [2] report that students prefer to submit assign-
ments online. Online feedback has also correlated with higher
exam scores [5].

3. COURSE POLICIES
CS 61A has always espoused the idea that programs are

a medium of communication among people; that “programs
must be written for people to read, and only incidentally for
machines to execute,” [1]. At the same time, we believe that
forcing students to adhere to a rigid and prescriptive low-
level style guide would draw their attention away from the
central aspects of program composition: concise implemen-
tations, clear naming, modular decomposition, and effective
functional abstraction. We give our students the following
guidelines to promote composition quality without suppress-
ing their personal stylistic judgment.

3.1 Composition Guidelines
Our general composition guidelines emphasize the follow-

ing aspects of program design:

Names Choosing names that evoke the purpose or meaning
of the values to which they refer.

Functions Defining functions with a clear role in the pro-
gram that abstract the implementation of a behavior.

4https://code.google.com/p/rietveld/w/list

Purpose Removing all unused and unnecessary code and
comments, leaving behind only code with a purpose.

Brevity Preferring concise implementations to convoluted
ones, without explicitly minimizing the line count.

Students were instructed that these elements together deter-
mined a program’s overall composition quality. The original
guidelines5 given to students during the Fall 2012 semester
in which this paper’s experiments were conducted also in-
clude examples and links to further reading.

3.2 Scoring and Feedback
To provide a direct incentive for students to write com-

prehensible programs, we assigned a small composition score
for every assignment, in addition to the correctness score as-
signed by our autograding scripts. A composition score in-
dicated a coarse-grained classification of the overall quality
of the submission. 12 of 94 total project points (13%) were
assigned for composition across 4 programming projects.

This composition score was assigned by 10 members of the
course staff, who selected those scores after writing composi-
tion feedback for each submitted project. Consistent scoring
proved to be a major challenge. At the outset, we agreed on
a feedback rubric for each project and discussed sample sub-
missions in a group meeting, in order to calibrate responses.
However, questions still arose among the course staff about
what feedback to give for individual student responses. The
features of the online tool described in the next section fa-
cilitated those discussions effectively.

4. INSTRUCTIONAL CODE REVIEW
All composition feedback was given through a web-based

interface that managed the work flow of the course staff and
all communication with students. A screenshot of the tool
appears in Figure 1.

This section highlights the features of the tool that proved
important to giving consistent, efficient, and effective feed-
back in a large course. These features were either available
already as part of Rietveld or straightforward to add to its
extensible code base, indicating a strong overlap between the
use case of industrial code review and instructional feedback.

4.1 System Overview
Rietveld is a web application that manages the process of

code reviews for software projects with large developer com-
munities. Originally authored by Guido Van Rossum, Ri-
etveld is used today by developers of the standard distribu-
tion of the Python programming language6, the Chromium
browser7, and the Go programming language8.

The data model groups all submissions by a student into a
sequence that begins with the starter code distributed by the
course staff. Students can revise their projects in response
to feedback, and changes are tracked across revisions. Feed-
back comments and responses are each associated with a line
of code in a particular submission of a project. The inter-
face allows a user to browse the different submissions by a
student and shows the feedback comments inline.

5http://inst.eecs.berkeley.edu/~cs61a/fa12/
composition.html
6http://www.python.org
7http://www.chromium.org
8http://golang.org

https://code.google.com/p/rietveld/w/list
http://inst.eecs.berkeley.edu/~cs61a/fa12/composition.html
http://inst.eecs.berkeley.edu/~cs61a/fa12/composition.html
http://www.python.org
http://www.chromium.org
http://golang.org

Figure 1: A screenshot of the code review tool used to give composition feedback. This view is presented to
a course staff member when writing feedback for a student. Red text was removed from the starter code.
Green text was added by the student. Inline comments can be expanded or collapsed to a single line.

4.2 Difference Visualization
The standard view of a submission is a highlighted dif-

ference visualization between the submitted code and the
starter code distributed to students. As our projects include
a substantial amount of scaffolding, having a clear visualiza-
tion of what was changed by the student is a boon for grader
efficiency.

Difference visualizations can also be displayed for multiple
submissions by the same student, so that revisions made in
response to feedback can be easily tracked.

4.3 Conversation Threading
Each feedback comment begins a threaded conversation.

Students are able to respond to individual comments, asking
for clarification or justifying their original choices.

We did not require that students respond to comments,
but we encouraged them to do so if they did not agree or
wanted clarification.

4.4 Workflow Management
The tool provides instructors with a list of unfinished

tasks, including ungraded assignments and responses from
students that need to be addressed.

The tool tracks both students and instructors as users of
the system. It assigns each student submission to a partic-
ular instructor, who is responsible for providing feedback.
We chose to assign each student to the same grader for
every project, so that graders could track their students’
progress. In the future, we plan to experiment with a ro-
tation of graders so that students are exposed to multiple
opinions.

4.5 Permissions Control
All instructors are given permission to view all student

submissions, and submissions are given unique URLs. Hence,

one instructor may ask another to help review a tricky case
by emailing a link. In our experience, shared access to sub-
missions facilitated useful discussions among the course staff.

Students are only able to see their own submissions, along
with any comments made by the course staff. They view the
same interface as the instructors, and therefore can make
comments on any line of code. In this way, they can use the
tool to ask direct questions about their submissions. Shared
access among the course staff facilitates auditing in the case
that a student complains about the feedback that she or he
received.

This permissions model is customized for instructional
use. In Rietveld, all issues are public.

Extending the permissions model has proven to be straight-
forward. For instance, we were also able to adapt the tool to
support an anonymous peer reviewing experiment wherein
students commented on each other’s submissions. While the
details of that experiment are beyond the scope of this paper,
it is worth noting here that the modular design of Rietveld
allowed for substantial changes with minimal fuss.

4.6 Communication
Students receive emails from the tool when they have sub-

mitted and when they are given feedback from an instructor.
The feedback is included directly in the email, along with
corresponding line numbers. Thus, students do not need to
log into a separate system to read their feedback.

We believe that students read a much larger portion of the
feedback given to them via this email-based tool, compared
to our old system of writing comments on paper and return-
ing that paper to students. In previous years, vast stacks
of unclaimed printed assignments would accumulate. As a
result, the course staff was not motivated to provide helpful
feedback. With this tool, all students receive their feedback
and some even respond.

4.7 Repeated Feedback
Snippets are another feature we added to tailor the system

to instructional use.9 The interface for writing comments
includes access to previously authored comments from the
current instructor and a pool of comments shared among
all instructors. Any comment can be added to this cache
of snippets. In this way, members of the course staff can
share their most frequent responses with each other, and
consistent messages are sent to students.

This feature is particularly helpful in suggesting alternate
implementations to students. One instructor can generate
a good example solution to a question, and all others can
suggest it to their students when appropriate.

The shared snippet memory also alerts each member of the
grading staff to the types of issues encountered by others,
which helps to keep the entire staff synchronized.

4.8 Configuration and Deployment
The software runs on Google App Engine, a hosting ser-

vice that manages all server configuration and distributed
data storage. User authentication and email addresses are
managed via Google accounts. The system administration
effort required is minimal.

In our institution, all student email addresses are associ-
ated with Google accounts, and so no sign-up or registra-
tion is required. Free Gmail accounts would also suffice.
Extending the system to use additional forms of authenti-
cation should be feasible, although we have not tried to do
so.

4.9 Version Control Integration
The tool accepts changes by reading the commit diff for-

mats of various version control systems. Thus, students can
submit their projects simply by tagging a commit to version
control, then running a script to upload their submission.
This upload script is maintained and distributed as part of
Rietveld.

Our course does not require students to use version con-
trol. They submit via a command-line script, and we exe-
cute the necessary version control commit and upload calls
to push their submissions to the online system.

4.10 Usage
The software scaled effectively to a course with more than

700 students enrolled. In the semester that we introduced
the tool, a total of 8505 comments were made for 3325
project submissions. All of these comments and their re-
sponses are tracked in a database to support analysis.

5. EVALUATIONS
We developed our tool and associated course policies in

order to improve the composition quality of project sub-
missions. We evaluated our students’ experience through
an end-of-course survey, and we evaluated their composi-
tion quality by comparing their submissions to those of a
previous semester, Fall 2011, in a blind survey.

5.1 Student Survey Results
At the end of the course, we asked students three questions

related to the composition component of the course. Table 1

9Snippet memories were implemented by Chenyang Yuan.

Question Female Male Total

How much did you read
of the composition feedback
that you received on your
project submissions?

4.30 4.13 4.17

How helpful was the compo-
sition feedback you received?

3.60 3.37 3.42

How well did the composi-
tion feedback software sys-
tem work for you?

3.92 3.71 3.75

Number of responses 134 485 626

Table 1: Mean student response to three end-of-
semenster questions about the composition feedback
effort. Possible responses to each question were 1
through 5 on a sliding scale (5 is better). Mean re-
sponses by gender are given for students who will-
ingly reported their gender identity.

lists the questions and mean responses. Students answered
each question using a sliding scale from 1 to 5.

The majority of students report reading the feedback,
with 74% responding a 4 or 5 out of 5. Those who reported
their gender as female gave higher responses overall by a
statistically significant margin (p < 0.05) by a Pearson’s
chi-squared test with four degrees of freedom.

About half of students reported that the feedback was
helpful, with 49% responding 4 or 5 out of 5. Again, those
students identifying as female gave higher responses overall,
but the difference was not statistically significant.

Three fifths of students reported that the software tool
was helful, with 60% responding 4 or 5 out of 5. Those
students identifying as female gave higher responses overall,
but the difference was not statistically significant.

Overall, students regarded our composition quality effort
positively. In a free response survey question, some stu-
dents indicated that scores for composition quality seemed
arbitrary and too harsh. In the future, we intend to cal-
ibrate scores across graders, as suggested by MacWilliam
and Malan [10].

5.2 Blind Survey Design
To evaluate whether composition feedback led to higher

quality submissions, we performed a comparison of responses
to a single question that was unchanged between Fall 2011,
before our composition feedback effort, and Fall 2012, when
this effort was implemented using our web-based tool. We
chose this targeted setting to minimize other sources of vari-
ance across semesters.

The problem we evaluated was to implement a function
to compute the centroid of a polygon, represented as a se-
quence of adjacent vertices. This problem appeared in their
second project [3], after they had received composition feed-

Question Fall 2011 Fall 2012

To what extent do names in-
troduced in the implementa-
tion convey the meaning and
purpose of their values?

2.14 2.25

To what extent is their imple-
mentation concise?

1.81 2.21

Overall, to what extent has the
implementation fulfilled the
composition guidelines?

1.86 2.07

Table 2: Mean grader response to a blind survey
comparing student submissions from semesters be-
fore (Fall 2011) and after (Fall 2012) the implemen-
tation of our composition feedback effort. Possi-
ble responses to each question were “Somewhat” (a
score of 1), “Mostly” (a score of 2), or “Completely”
(a score of 3).

back from their first project [12]. Students were directed to
the Wikipedia page on Centroids10 to complete their imple-
mentation. Correctness tests were provided in the project.

Submissions are mostly comparable across semesters. The
course content and assignments remained largely the same.
The problem wording was unchanged between years. How-
ever, the Wikipedia page describing how to compute a cen-
troid was edited during the Fall 2012 semester: one of the
students was dissatisfied with the original notation and im-
proved it during the course of the semester. However, we
don’t believe that this change substantially affected student
submissions, as the course forums in both semesters con-
tained several descriptions of the computation that clarified
any issues with the Wikipedia description.

We sampled uniformly without replacement 16 submis-
sions from each year, filtering out any submissions that failed
to implement the centroid function. We isolated the student
code for finding a polygon centroid and removed any per-
sonally identifying information and cues about the semester
from which the submission came. These submissions were
then shuffled randomly into a 32-sample test set.

Each submission was evaluated by six graders from the
Fall 2013 course offering. Graders have all completed the
full course and received excellent overall scores and partic-
ipation scores, so we consider them to be expert raters for
this task. None of these graders were involved in the origi-
nal composition quality effort as course staff. One of them
did report that he believed his submission from the course
in Fall 2012 was included in the random test set.

5.3 Blind Survey Results
These expert graders were asked to rate each submission

on several dimensions, responding either “Somewhat” (score
of 1), “Mostly” (score of 2), or “Completely” (score of 3).
Table 2 shows their mean responses. Graders were also given
a “Not at all” option, but it was never used.

10http://en.wikipedia.org/wiki/Centroid

Effective use of names in their implementation improved
slightly in Fall 2012, but the margin of increase is not signifi-
cant. A centroid computation does have intermediate values,
but they don’t have natural names. Hence, a wide range of
arbitrary naming strategies were used by students. We can-
not draw a meaningful conclusion about whether students
improved their use of names based on this single problem.

On the other hand, Fall 2012 submissions were more con-
cise by a significant margin (p < 0.001). A strong emphasis
was placed on concise implementations in the feedback from
the first project, and students appear to have responded by
submitting more direct implementations rather than convo-
luted ones.

Overall, submissions in Fall 2012—the semester that in-
cluded composition feedback—were judged to have better
fulfilled the composition guidelines described in Section 3.1.
This difference is statistically significant (p < 0.01) by a
Pearson’s chi-squared test with two degrees of freedom.

6. CONCLUSION
We introduced a new tool to facilitate feedback at scale,

based on an existing open-source project. We used the tool
to place renewed emphasis on the composition quality of stu-
dent submissions. In the semester that we began providing
feedback with this tool, the composition quality of student
submissions improved.

We have confirmed many of the observations of previous
similar efforts in other courses, as well as outlined some of
the features of our tool that proved particularly effective
in a large course. We look forward to improving the tool
based on the feedback of other users in the computer science
community.

7. REFERENCES
[1] H. Abelson and G. Sussman. Structure and

Interpretation of Computer Programs. MIT Press
McGraw-Hill, Cambridge, Mass. New York, 1985.

[2] P. Bridge and R. Appleyard. A comparison of
electronic and paper-based assignment submission and
feedback. British Journal of Educational Technology,
39(4):644–650, 2008.

[3] J. DeNero and A. Muralidharan. The twitter trends
project. In Nifty Assignments Track of SIGCSE, New
York, NY, USA, 2013. ACM.

[4] S. H. Edwards and M. A. Perez-Quinones. Web-CAT:
automatically grading programming assignments. In
Proceedings of the 13th annual conference on
Innovation and technology in computer science
education, ITiCSE ’08, pages 328–328, New York, NY,
USA, 2008. ACM.

[5] D. Heaney and C. Daly. Mass production of individual
feedback. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer
science education, ITiCSE ’04, pages 117–121, New
York, NY, USA, 2004. ACM.

[6] J. Hollingsworth. Automatic graders for programming
classes. Communications of the ACM, 3(10):528–529,
Oct. 1960.

http://en.wikipedia.org/wiki/Centroid

[7] D. Jackson and M. Usher. Grading student programs
using assyst. In Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science
education, SIGCSE ’97, pages 335–339, New York,
NY, USA, 1997. ACM.

[8] D. Jones and B. Jamieson. Three generations of online
assignment management. What works and why :
reflections on learning with technology : ASCILITE,
1997.

[9] D. Knuth. Literate Programming. Center for the Study
of Language and Information, Stanford, Calif, 1992.

[10] T. MacWilliam and D. J. Malan. Streamlining grading
toward better feedback. In Proceedings of the 18th
ACM conference on Innovation and technology in
computer science education, ITiCSE ’13, pages
147–152, New York, NY, USA, 2013. ACM.

[11] D. Morris. Automatic grading of student’s
programming assignments: an interactive process and
suite of programs. In Frontiers in Education, 2003.
FIE 2003 33rd Annual, volume 3, pages S3F–1–6
vol.3, 2003.

[12] T. Neller. Pig. In Nifty Assignments Track of
SIGCSE, New York, NY, USA, 2010. ACM.

	Introduction
	Related Work
	Course Policies
	Composition Guidelines
	Scoring and Feedback

	Instructional Code Review
	System Overview
	Difference Visualization
	Conversation Threading
	Workflow Management
	Permissions Control
	Communication
	Repeated Feedback
	Configuration and Deployment
	Version Control Integration
	Usage

	Evaluations
	Student Survey Results
	Blind Survey Design
	Blind Survey Results

	Conclusion
	References

