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ABSTRACT

This paper investigates the relationship between the loss func-
tion, the type of regularization, and the resulting model spar-
sity of discriminatively-trained multiclass linear models. The
effects on sparsity of optimizing log loss are straightforward:
L regularization produces very dense models while L; regu-
larization produces much sparser models. However, optimiz-
ing hinge loss yields more nuanced behavior. We give experi-
mental evidence and theoretical arguments that, for a class of
problems that arises frequently in natural-language process-
ing, both L;- and Ls-regularized hinge loss lead to sparser
models than Ly-regularized log loss, but less sparse models
than L, -regularized log loss. Furthermore, we give evidence
and arguments that for models with only indicator features,
there is a critical threshold on the weight of the regularizer
below which L;- and Ls-regularized hinge loss tends to pro-
duce models of similar sparsity.

Index Terms— regularization, hinge loss, support vector
machines, SVMs, sparsity

1. INTRODUCTION

In this paper, we offer some observations concerning the re-
lationship between model sparsity and the degree and form
of regularization, for linear models trained by optimizing L;-
and Lo-regularized hinge loss. We describe the simple mathe-
matical properties of the regularization and loss functions that
govern this relationship, and present results of experiments on
a typical natural language processing classification problem
that demonstrate these properties empirically.

By model sparsity (density), we mean the proportion of
feature weights in a statistical model that are zero (nonzero).
In statistical natural language processing, we frequently train
models over very large feature spaces; often the number of
possible feature weights is much greater than the number of
training examples. In such situations, model sparsity is highly
desirable. The smaller the number of nonzero feature weights,
the easier the model is to store, and the faster it is to apply.

Before starting to experiment with regularized hinge loss,
we had expected that L, regularization would result in quite
sparse models and Lo regularization would result in very
dense models, based on experience of the research commu-
nity with L; and L, regularization of log loss for log-linear

probabilistic models (e.g., [1]). However, when we compared
L1- and Ly-regularized hinge loss, the results surprised us.
We found that, after optimizing the weight of the regulariza-
tion penalty on development data, the sparsities of the models
resulting from L; and L, regularization were remarkably
similar. We then compared those results to the sparsities of
models obtained by L; and L4 regularization of log loss and
found that the hinge-loss-based models were much sparser
than those based on Ly-regularized log loss, and denser than
those based on L;-regularized log loss. Moreover, we found
that for hinge loss there was a critical threshold of the regu-
larization weight, below which the choice of regularizer had
relatively little effect on model sparsity.

2. DEFINITIONS

We define a multiclass classification problem by a label set £
and a feature set F. For simplicity, we restrict our discussion
to indicator features. Each training example consists of a set
of features f C F and a correct label [ € £. A linear model
is a vector w € RI£1*I71 indexed by feature-label pairs. We
refer to the coordinates w¢ ;) of w as feature weights. A
model w maximizes the sum of relevant feature weights to
predict a label I(f, w):

[(f,w) = arg max W,
(f,w) = argm f; (7.)

We learn a model w by minimizing a regularized loss function
over a training set 7'

w = arg min Z Uw'; (£,1)) + Cr(w’)

where / is the loss function, r is the regularizer, and C is a
regularization weight that controls the trade-off between min-
imizing loss on the training data and regularization.

In the experiments described here, one of the loss func-
tions we consider is the version of multiclass hinge loss in-
troduced by Crammer and Singer [2]. For a linear model, the
hinge loss on a single example can be expressed as

Ly(w; (£,1)) =max [ 0, 1+ rlr}iicz:w(f,l/) — Zw(f’l)
fef fef



Hinge loss is O if the score of the correct label exceeds the
score of every other label by by a margin of at least 1. Other-
wise, it is the amount by which the score of the correct label
falls short of exceeding the score of every other label by a
margin of at least 1.

The other loss function we consider is log loss

(w; (£,1) = —log Py (I|f)

where

XD D et WA
Py (I]f) =
Dlirer P2 e W(sL)
Log loss is the negative of the logarithm of the probability of
the correct label given the features, according to an exponen-

tial model.
The two regularizers we consider are the L, regularizer

ri(w) =3 > fw

feFlel

and the Lo regularizer

ra(w) = Z Zw?ﬁl)

feFleL

which is actually the square of the Ly norm of w.

3. TASK AND DATA

In our experiments, we address the task of part-of-speech
(POS) tagging by independent classifiers. That is, tagging
each token is treated as an independent multi-class classifi-
cation problem, in which observable features of neighboring
tokens may be used in the classifier, but decisions about how
neighboring tokens are tagged are not used. We chose this
task because it is a multiclass classification task with clear
relevance to NLP, and it has previously been shown that POS
tagging by independent classifiers can perform nearly as well
(96.8% accuracy [5]) as the state of the art for sequence mod-
els (97.33% accuracy [10]). [11] also reports very competi-
tive results on this task using independent classifiers (96.57%
accuracy).

For data, we use the usual Wall Street Journal (WSJ) cor-
pus from Penn Treebank III [6], including what has come to
be the standard split (for POS tagging) into training (sections
0-18), development (sections 19-21), and test (sections 22-
24) data sets.

Our feature space consists of the following indicator func-
tions, which express various aspects of the orthography and
frequency of the tokens in the training data:

Contains a digit

Contains a hyphen

Contains an upper-case character
Lower-cased frequency class

Original-case frequency class
Lower-cased prefixes up to 4 characters
Lower-cased suffixes up to 4 characters
Lower-cased token

Original-case token

For many possible features derived from orthography or
frequency, we face the question of whether to normalize cap-
italization before feature extraction (e.g., by lower-casing all
tokens). We resolve this by having a version of every fea-
ture derived from lower-casing each token, and an additional
version of some features derived from the original casing of
the token, if that differs from the lower-cased form. That is,
“bush” and “Bush” will share a set of features derived from
their lower-cased forms, but “Bush” will have some additional
features, based on its original case.

The frequency class features have values equal to the log,
of the observed token count (lower-cased, or original case) in
the training set, rounded up to the next integer, if not already
an integer. Unknown tokens in unseen data are assigned the
same frequency classes as singletons in the training set.

The features above are further annotated as belonging to
the token being tagged, the preceding token, or the following
token. We added two additional features for “follows sentence
boundary,” and “precedes sentence boundary.” These feature
were then multiplied by the 45 Penn Treebank POS tags to
produce a set of 11,391,660 possible feature weights.

4. LEARNING ALGORITHMS

We trained four classifiers for the POS-tagging task, optimiz-
ing L;-regularized hinge loss, Lo-regularized hinge loss, L -
regularized log loss, and Lo-regularized log loss, tuning the
regularization weight C' on the development data to obtain
the highest tagging accuracy for each objective.

To optimize L-regularized hinge loss, we used an itera-
tive line search method we are currently developing that lever-
ages the fact that L;-regularized hinge loss is piecewise lin-
ear. To optimize Lo-regularized hinge loss we used the toolkit
SyMmticlass 13 4] which applies a cutting plane method, in-
crementally adding constraints until a desired degree of con-
vergence is reached. L;- and Ls-regularized log loss were
optimized using the MALLET toolkit [7]. MALLET employs
the L-BFGS quasi-Newton method [8] to optimize the Lo-
regularized log loss objective, and an orthant-wise version of
L-BFGS [1] to optimize L;-regularized log loss.

5. EXPERIMENTAL RESULTS

For each of the four classifiers we trained, Table 1 shows
the value of the regularization weight C'! that maximizes

I'The regularization weight actually used by SVM™!iclass i combined
with per-example-loss, so we have rescaled values of C' for this algorithm
to be comparable to those for the total-corpus-loss used by the other algo-
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Fig. 1. Nonzero feature weight count vs. regularization weight C
Objective C | Nonzero weights | Accuracy loss when C < 1.
hinge loss + Ly | 0.125 482,933 96.85%
hinge loss + L2 | 0.125 605,347 96.92%
log loss + L 1.000 50,864 96.79% 6. ANALYSIS
log loss + L2 1.000 11,391,705 96.84%

Table 1. Model size and test set accuracy for different objec-
tives

development set accuracy, along with the resulting number
of nonzero feature weights and test set tagging accuracy.
The accuracies of the four models are fairly close, but the
model sparsities differ dramatically. The model optimizing
Lo-regularized log loss is maximally dense; every possible
feature weight? receives a nonzero value. The model optimiz-
ing L, -regularized log loss is extremely sparse, with nonzero
values for only 0.45% of the possible feature weights. The
numbers of nonzero feature weights for the two hinge loss
models lie in between, with approximately the same number
of nonzero feature weights for either Ly or Lo regularization
(4.2% and 5.3% of the possible feature weights).

Figure 1 shows how the number of nonzero feature
weights varies with the regularization weight C, for L;- and
Lo-regularized hinge loss and for L;-regularized log loss. For
Ly-regularized log loss, the models were maximally dense
for all values of C' and are not included in Figure 1. It seems
striking that the model sparsity for L;-regularized hinge loss
changes significantly only at integer values of C, and is re-
markably close to the model sparsity for Ly-regularized hinge

rithms.
2The MALLET tooklkit used to optimize log loss adds a bias weight for
each label, yielding an additional 45 weights.

Some of the questions raised by our results are:

e Why are the models for Lo-regularized hinge loss rela-
tively sparse, rather than dense like the models for Lo-
regularized log loss?

e Why are the models for L;- and Ly-regularized hinge
loss so similar in sparsity for C' < 1?

e Why does model sparsity for L;-regularized hinge loss
change so abruptly at integer values of C?

These questions can be answered by considering the be-
havior of the multiclass hinge loss objective. Unregularized
hinge loss is continuous, convex, and piecewise linear. Due to
piecewise linearity, as we vary a feature weight w s ), hold-
ing other feature weights fixed, unregularized hinge loss ¢5,
may have a minimum, not just at a single point, but over an
extended region where 0/, /0w,y = 0. If the minimum of
regularized hinge loss and the point where ws;) = 0 both
fall in the region where 9¢),/0w(s;) = 0, then regularized
hinge loss must be minimal at the point where ws ;) = 0.
Otherwise, we could reduce regularized hinge loss by setting
w(y,y = 0, because the regularization penalty would be re-
duced, but the unregularized hinge loss would not change.

From inspection of the definition of unregularized multi-
class hinge loss, we can see that ¢}, /0w ¢,;) = 0 for a feature
weight w ;) with respect to a model w, if (but not only if),
for every training example (f, ") one of the following holds:



l' f g fa
2. (f,1’) is correctly classified by a margin > 1, or

3. [ is neither the correct label ' nor the incorrect label
with the highest model score.

If w is a highly accurate model with low hinge loss, there may
be many such feature weights, because most examples will be
correctly classified by a margin > 1, and the other two con-
ditions will capture many other feature weights on the small
number of examples that are not correctly classified by a mar-
gin > 1. For such a feature weight w(; ;) that regularization
has kept close to 0, the point where w(y,;y = 0 may fall in the
region where 0/, /Ow ;) = 0, in which case w(y,;y = 0 will
hold at the optimium.

This pattern is consistent with the standard analysis of
hinge loss classifiers in terms of support vectors. Considering
the training set as a whole, we know that an optimized SVM
will tend to select only a few support vectors from the train-
ing set. Moreover, many features are associated only with a
handful of training examples. If none of those examples are
chosen as support vectors (i.e., condition 2 holds for all such
examples), then the corresponding feature weight will be 0.

We can see empirically that this situation arises very fre-
quently with our data and feature set. Examining the best
models we found by optimizing L;-regularized hinge loss,
we observe that for more than 95% of the possible feature
weights, w(s;) = 0 and 8£h/8w(f’l) = (0, because at least
one of the conditions listed above is met for every training
example.

This source of sparsity is independent of the fact that all
our features are 0-1 valued. However, additional examples
of wis;y = 0 and 9y, /0w(s;y = 0 coinciding arise be-
cause we use indicator features. Sometimes 9¢j, /0w,y = 0
over a region because the examples adding to and subtract-
ing from 0/}, /Ow 4,y exactly balance within the region. This
happens easily with indicator features, which always change
Ol /0wy, by exactly 1 as w(g,;) passes through a point
where an example is classified correctly by a margin of ex-
actly 1. This happens with about 4% of the remaining possi-
ble feature weights in the best models we found in our exper-
iments.

We can now answer the question of why Ly-regularized
hinge loss models are relatively sparse by observing that none
of the above depends on the exact form of regularization.
As long as the point w(s;) = 0 falls in the region where
Ol /Owsyy = 0, wsyy will tend to go to O with any push
at all from regularization.

For our second question, why L;- and Ls-regularized
hinge loss models are so similar in sparsity for C' < 1, the an-
swer depends on the observation we mentioned above that, if
only indicator features are used, 05 /0w,y can increase or
decrease only by integer amounts. Thus, if 9¢;, /Ow(y,;) # 0,
then |0y, /0w(s;)| > 1. Note also that the derivative of

the L; regularizer Ory /0wy = C if wiyy > 0 and
Ory /0wy = —C if wig;y < 0. This means that if C' < 1,
the regularizer derivative can never outweigh a nonzero hinge
loss derivative to keep a feature weight at 0. If ws;) = 0,
but 94y, /0wy # 0, regularized hinge loss can always be
reduced either by increasing or by decreasing wyy ;). Thus,
with L; regularization and C' < 1, ws;) tends to go to 0
only if wy;) = 0 falls in the region where 9¢;, /0w ¢,y = 0,
the condition under which any reglarization will tend to push
wyr,) to 0. Hence, with C' < 1, Ly and Lo regularization
tend to produce hinge loss models of similar sparsity.

The observation that 0¢j,/0w(s;) can increase or de-
crease only by integer amounts when only indicator fea-
tures are used also helps explain why model sparsity for
L;-regularized hinge loss changes abruptly at integer val-
ues of C'. At any nonzero value of a feature weight wy

either Ory /0w,y = C or Ory /0wy = —C. Hence if
|0¢1, /0wy < C on both sides® of the optimum of reg-
ularized loss, it must be the case that wery = 0 at the

optimum. Since any single example can increase or decrease
0Ly /0w,y only by 0 or 1, there must be at least C' examples
of f in the training corpus for [0¢; /0w ;)| > C' to be pos-
sible. Thus C' acts as a count cut-off on f, and whenever C'
is reduced past an integer value, a new set of low frequency
features become candidates to have nonzero weights in an
optimized, regularized model.

7. SUMMARY

We have shown empirically that L;- and Lo-regularized
hinge loss lead to sparser models than Lo-regularized log
loss, but less sparse models than L;-regularized log loss,
and that, with only indicator features, model sparsity for
L;-regularized hinge loss changes abruptly at integer values
of C, and is remarkably close to the model sparsity for Lo-
regularized hinge loss when C' < 1. These observations are
explained by analyzing how the hinge loss derivative interacts
with the derivatives of the two regularizers.
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