Fast Consensus Decoding over Translation Forests

John DeNero, David Chiang, and Kevin Knight denero@berkeley.edu, {chiang, knight}@isi.edu

Overview

 Minimum Bayes risk (MBR) decoding tends to improve over model-best (Viterbi) decoding

• With a linear loss function, MBR is efficient

 Our variant, fast consensus decoding, is efficient even with non-linear loss functions (e.g., BLEU)

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\vec{\lambda} \cdot \vec{\varphi}(e, f)\right)$$

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$

Sentence similarity evaluation measure (e.g., BLEU)

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$

Our model's posterior distribution

Sentence similarity evaluation measure (e.g., BLEU)

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$
 Flip sign to get "loss" \red Our model's posterior distribution

Sentence similarity evaluation measure (e.g., BLEU)

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk ==
Maximizing expected similarity

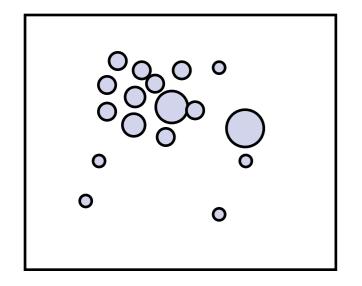
$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\frac{\vec{\lambda} \cdot \vec{\varphi}(e, f)}{\vec{\lambda}}\right)$$

Minimizing Bayes risk == Maximizing expected similarity

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$



Points:

Translations

Size:

Posterior

Distance:

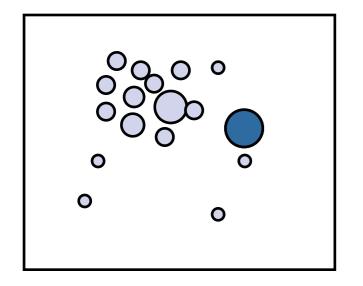
Similarity

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\left[\vec{\lambda} \cdot \vec{\varphi}(e, f)\right]\right)$$

Minimizing Bayes risk == Maximizing expected similarity

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e;e')]$$



Points:

Translations

Size:

Posterior

Distance:

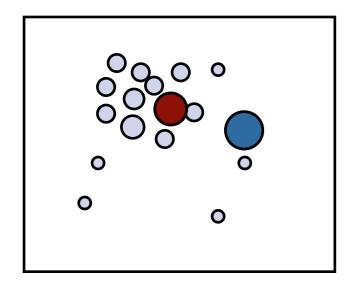
Similarity

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\left[\vec{\lambda} \cdot \vec{\varphi}(e, f)\right]\right)$$

Minimizing Bayes risk == Maximizing expected similarity

$$R(e) = 1 - \mathbb{E}_{P(e'|f)}[S(e; e')]$$



Points:

Translations

Size:

Posterior

Distance:

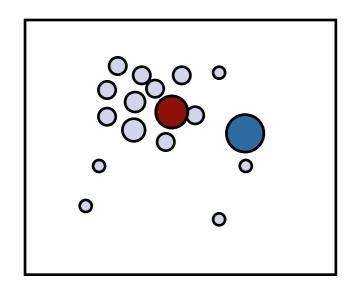
Similarity

MT models induce posterior distributions over outputs

$$P(e|f) = \frac{1}{Z} \exp\left(\left[\vec{\lambda} \cdot \vec{\varphi}(e, f)\right]\right)$$

Minimizing Bayes risk == Maximizing expected similarity

$$R(e) = 1 - \left[\mathbb{E}_{P(e'|f)} [S(e;e')] \right]$$



Points:

Translations

Size:

Posterior

Distance:

Similarity

E.g., Unigram Precision:

Number of word types in e and e'

Number of word types in e

Decode to Create a K-Best List

e: decoding of forests -0.22

e₂: forest decoding -0.5 l

e₃: forest decoders -0.51

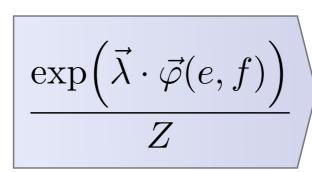
Decode to Create a K-Best List

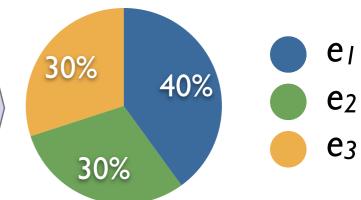
Exponentiate & Normalize

eı:	decoding of forests	-0.22
-----	---------------------	-------

e₂: forest decoding -0.51

e₃: forest decoders -0.51





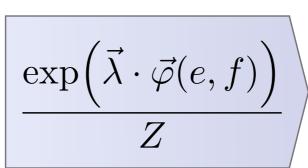
Decode to Create a K-Best List

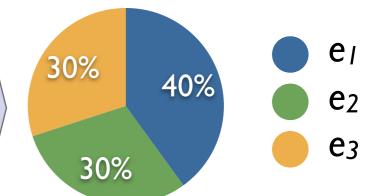
Exponentiate & Normalize

e: decoding of forests -0.22

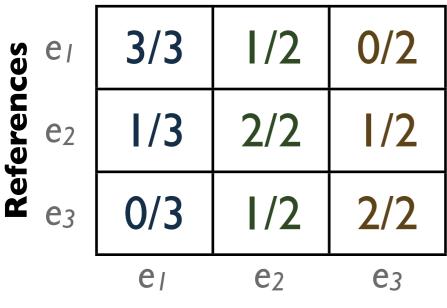
e₂: forest decoding -0.51

e₃: forest decoders -0.51





Compute K² Pairwise Similarities



Hypotheses

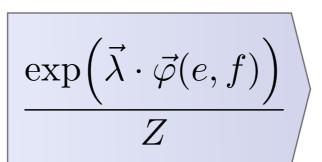
Decode to Create a K-Best List

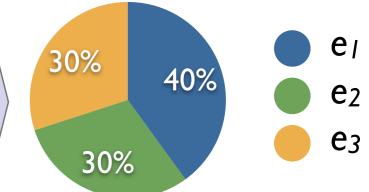
Exponentiate & Normalize

e: decoding of forests -0.22

e₂: forest decoding -0.5 l

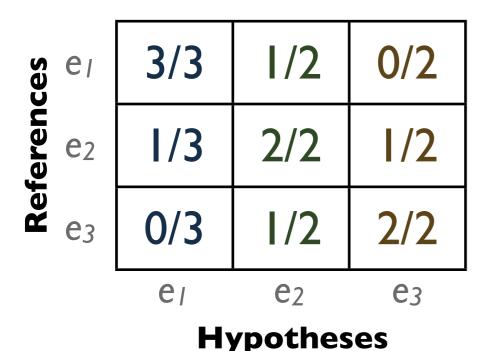
e₃: forest decoders -0.51

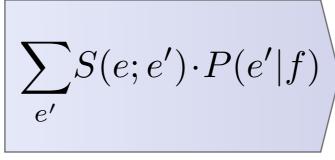


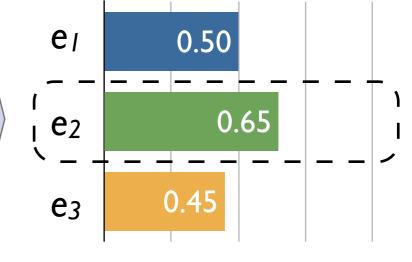


Compute K² Pairwise Similarities

Max over Expectations







Decode to Create a K-Best List

Exponentiate & Normalize

eı

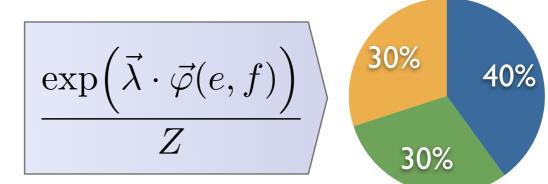
e₂

e₃

e: decoding of forests -0.22

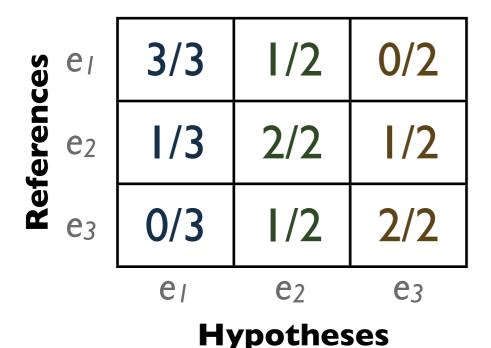
e₂: forest decoding -0.51

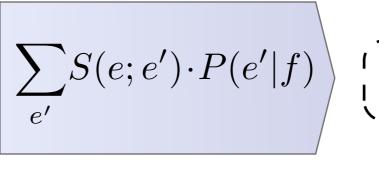
e₃: forest decoders -0.51



Compute (K²) Pairwise Similarities

Max over Expectations





Form

Examples

Sentence-level similarity functions

TER, METEOR

Sentence-level similarity functions S(e;e') TER, METEOR Feature-based similarity functions $S(e;\phi(e'))$ BLEU, NIST

Form	Example	es

Sentence-level similarity functions

S(e;e')

TER, METEOR

Feature-based similarity functions

 $S(e; \phi(e'))$

BLEU, NIST

BLEU:

$$\exp\left[\left(1 - \frac{|e'|}{|e|}\right)_{-} + \frac{1}{4} \sum_{n=1}^{4} \ln \frac{\sum_{t \in T_n} \min(c(e, t), c(e', t))}{\sum_{t \in T_n} c(e, t)}\right]$$

Form

Examples

Sentence-level similarity functions

TER, METEOR

Feature-based similarity functions

$$S(e; \phi(e'))$$

BLEU, NIST

BLEU:

Features $\phi(e')$ are counts of *n*-grams in e' —

$$\exp\left[\left(1 - \frac{|e'|}{|e|}\right)_{-} + \frac{1}{4} \sum_{n=1}^{4} \ln \frac{\sum_{t \in T_n} \min(c(e, t), c(e', t))}{\sum_{t \in T_n} c(e, t)}\right]$$

	Form	Examples
Sentence-level similarity functions	S(e;e')	TER, METEOR
Feature-based similarity functions	$S(e;\phi(e'))$	BLEU, NIST
Linear functions of features	$\omega(e) \cdot \phi(e')$	Unigram Precision

	Form	Examples
Sentence-level similarity functions	S(e;e')	TER, METEOR
Feature-based similarity functions	$S(e;\phi(e'))$	BLEU, NIST
Linear functions of features	$\omega(e) \cdot \phi(e')$	Unigram Precision

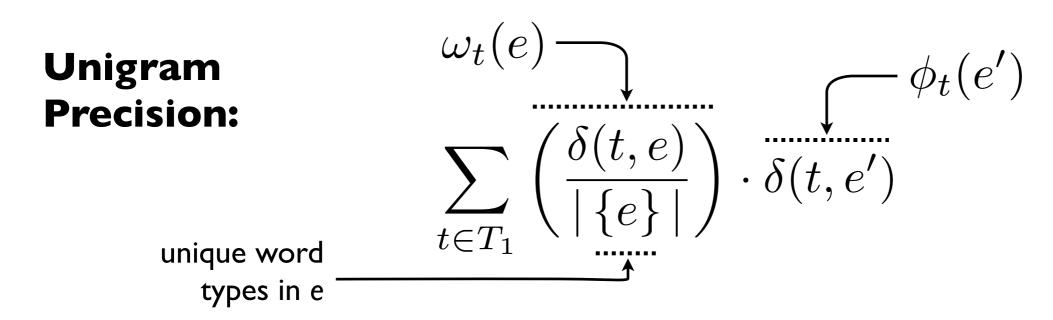
Unigram Precision:

$$\sum_{\substack{t \in T_1 \\ \text{types in e}}} \left(\frac{\delta(t,e)}{|\{e\}|}\right) \cdot \delta(t,e')$$

	Form	Examples
Sentence-level similarity functions	S(e;e')	TER, METEOR
Feature-based similarity functions	$S(e;\phi(e'))$	BLEU, NIST
Linear functions of features	$\omega(e)\cdot\phi(e')$	Unigram Precision

Unigram Precision:
$$\sum_{t \in T_1} \left(\frac{\delta(t,e)}{|\{e\}|} \right) \cdot \delta(t,e')$$
 unique word types in e

	Form	Examples
Sentence-level similarity functions	S(e;e')	TER, METEOR
Feature-based similarity functions	$S(e;\phi(e'))$	BLEU, NIST
Linear functions of features	$\omega(e) \cdot \phi(e')$	Unigram Precision



Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

$$\mathbb{E}_{e'|f}[S(e;e')] = \mathbb{E}_{e'|f}[\omega(e) \cdot \phi(e')] = \omega(e) \cdot \mathbb{E}[\phi(e')]$$

Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

$$\mathbb{E}_{e'|f}[S(e;e')] = \mathbb{E}_{e'|f}[\omega(e) \cdot \phi(e')] = \omega(e) \cdot \mathbb{E}[\phi(e')]$$

Maximizing expected similarity equals: $\underset{e}{\arg\max}\,S(e;\mathbb{E}\left[\phi(e')\right])$

Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

$$\mathbb{E}_{e'|f}[S(e;e')] = \mathbb{E}_{e'|f}[\omega(e) \cdot \phi(e')] = \omega(e) \cdot \mathbb{E}[\phi(e')]$$

Maximizing expected similarity equals: $\underset{e}{\arg\max}\,S(e;\mathbb{E}\left[\phi(e')\right])$

Average sentence in feature space

Linear functions of local features:

$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

$$\mathbb{E}_{e'|f}[S(e;e')] = \mathbb{E}_{e'|f}[\omega(e) \cdot \phi(e')] = \omega(e) \cdot \mathbb{E}[\phi(e')]$$

Maximizing expected similarity equals: $rg \max_e S(e; \mathbb{E}\left[\phi(e')\right])$

Similarity to the average sentence

Average sentence in feature space

Linear functions of local features:

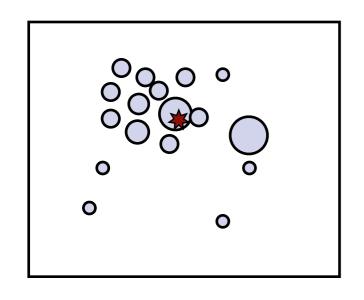
$$S(e; e') = \omega(e) \cdot \phi(e')$$

Linearity of expectations:

$$\mathbb{E}_{P(X)}\left[c\cdot X\right] = c\cdot \mathbb{E}_{P(X)}\left[X\right]$$

$$\mathbb{E}_{e'|f}[S(e;e')] = \mathbb{E}_{e'|f}[\omega(e) \cdot \phi(e')] = \omega(e) \cdot \mathbb{E}[\phi(e')]$$

Maximizing expected similarity equals: $rg \max_{e} S(e; \mathbb{E}\left[\phi(e')\right])$



Points:

 $\phi(e)$

Size:

P(e|f)

Star:

 $\mathbb{E}\left[\phi(e)\right]$

Similarity to the average sentence

Average sentence in feature space

Fast Consensus Decoding over K-Best Lists

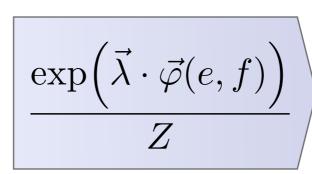
Decode to Create a K-Best List

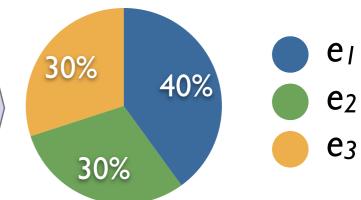
Exponentiate & Normalize

	eı:	decoding of forests	-0.22
--	-----	---------------------	-------

e₂: forest decoding -0.5 I

e₃: forest decoders -0.51





Fast Consensus Decoding over K-Best Lists

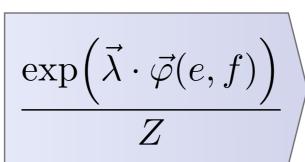
Decode to Create a K-Best List

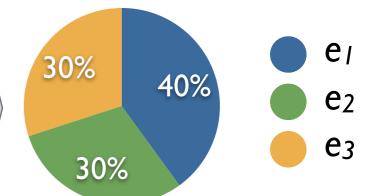
Exponentiate & Normalize

e: decoding of forests -0.22

e₂: forest decoding -0.51

e₃: forest decoders -0.51





Computed Feature Expectations

forest 0 | I | 0.6 forests | 0 | 0 |
$$\mathbb{E}[\phi(e')]$$
 | 0.7 decoders 0 | 0 | 0.3 of | 0 | 0.4

Fast Consensus Decoding over K-Best Lists

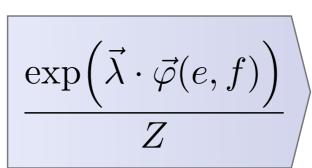
Decode to Create a K-Best List

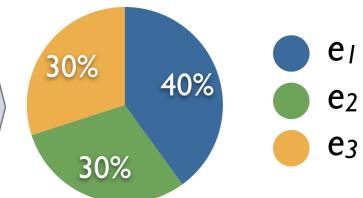
Exponentiate & Normalize

e: decoding of forests -0.22

e₂: forest decoding -0.51

e₃: forest decoders -0.51





Computed Feature Expectations

Max over Similarities

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

 $\operatorname{arg\,max} \operatorname{BLEU}(e; \mathbb{E}[\phi(e')])$ Expected n-gram counts

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

 $= \underset{e}{\operatorname{arg max}}$

Expected n-gram counts

$$\exp\left[\left(1 - \frac{\mathbb{E}\left[|e'|\right]}{|e|}\right]\right)_{-} + \frac{1}{4}\sum_{n=1}^{4}\ln\frac{\sum_{t\in T_n}\min(c(e,t),\mathbb{E}\left[c(e',t)\right])}{\sum_{t\in T_n}c(e,t)}\right]$$

Length penalty computed relative to the expected length of the output

N-gram counts are clipped by the expected count of each n-gram

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

 $= \underset{e}{\operatorname{arg}} \underset{e}{\operatorname{max}}$

Expected n-gram counts

$$\exp\left[\left(1 - \frac{\mathbb{E}\left[|e'|\right]}{|e|}\right]\right)_{-} + \frac{1}{4}\sum_{n=1}^{4}\ln\frac{\sum_{t\in T_n}\min(c(e,t),\mathbb{E}\left[c(e',t)\right])}{\sum_{t\in T_n}c(e,t)}\right]$$

Length penalty computed relative to the expected length of the output

N-gram counts are clipped by the expected count of each n-gram

On 1000-best lists:

80 times faster than MBR with nearly identical improvements (within 0.1 BLEU in all test conditions)

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\mathop{\arg\max}_{e}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

Feature-based similarity functions

$$S(e; \phi(e'))$$

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

$$O(k^2)$$

Not applicable

Feature-based similarity functions

$$S(e; \phi(e'))$$

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

$$O(k^2)$$

Not applicable

Feature-based similarity functions

$$S(e; \phi(e'))$$

$$O(k^2)$$

$$O(k) + O(k)$$

Consensus Search

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

$$O(k^2)$$

Not applicable

Feature-based similarity functions

$$S(e; \phi(e'))$$

 $O(k^2)$

$$O(k) + O(k)$$

Consensus Search

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

Objectives are equivalent

$$O(k) + O(k)$$

Consensus Search

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

$$O(k^2)$$

Not applicable

Feature-based similarity functions

$$S(e; \phi(e'))$$

$$O(k^2)$$

$$O(k) + O(k)$$

Consensus Search

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

Objectives are equivalent

$$O(k) + O(k)$$

Consensus Search

Expected Similarity (min. Bayes risk)

vs Fast Consensus

 $\underset{e}{\operatorname{arg\,max}}$

$$\mathbb{E}\left[S(e;e')\right]$$

$$S\left(e; \mathbb{E}\left[\phi(e')\right]\right)$$

Sentence-level similarity functions

$$O(k^2)$$

Not applicable

Feature-based similarity functions

$$S(e; \phi(e'))$$

$$O(k^2)$$

$$O(k) + O(k)$$

Consensus Search

Linear functions of features

$$\omega(e) \cdot \phi(e')$$

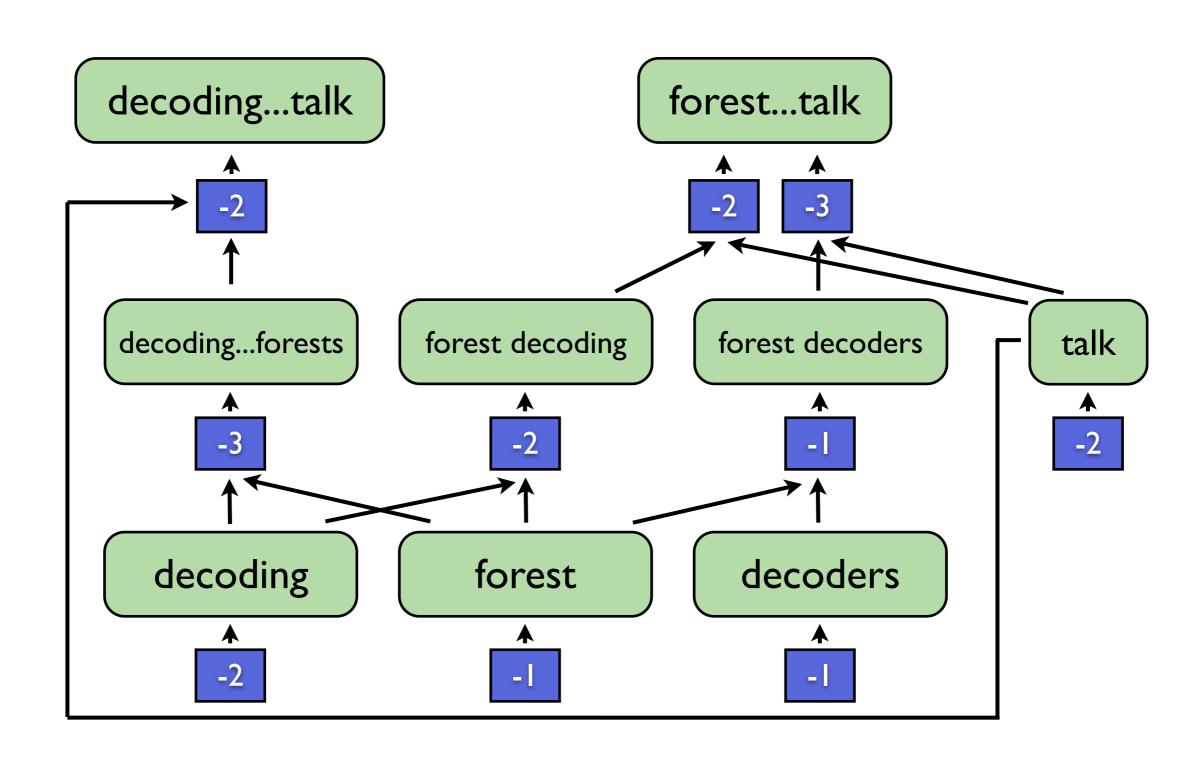
Objectives are equivalent

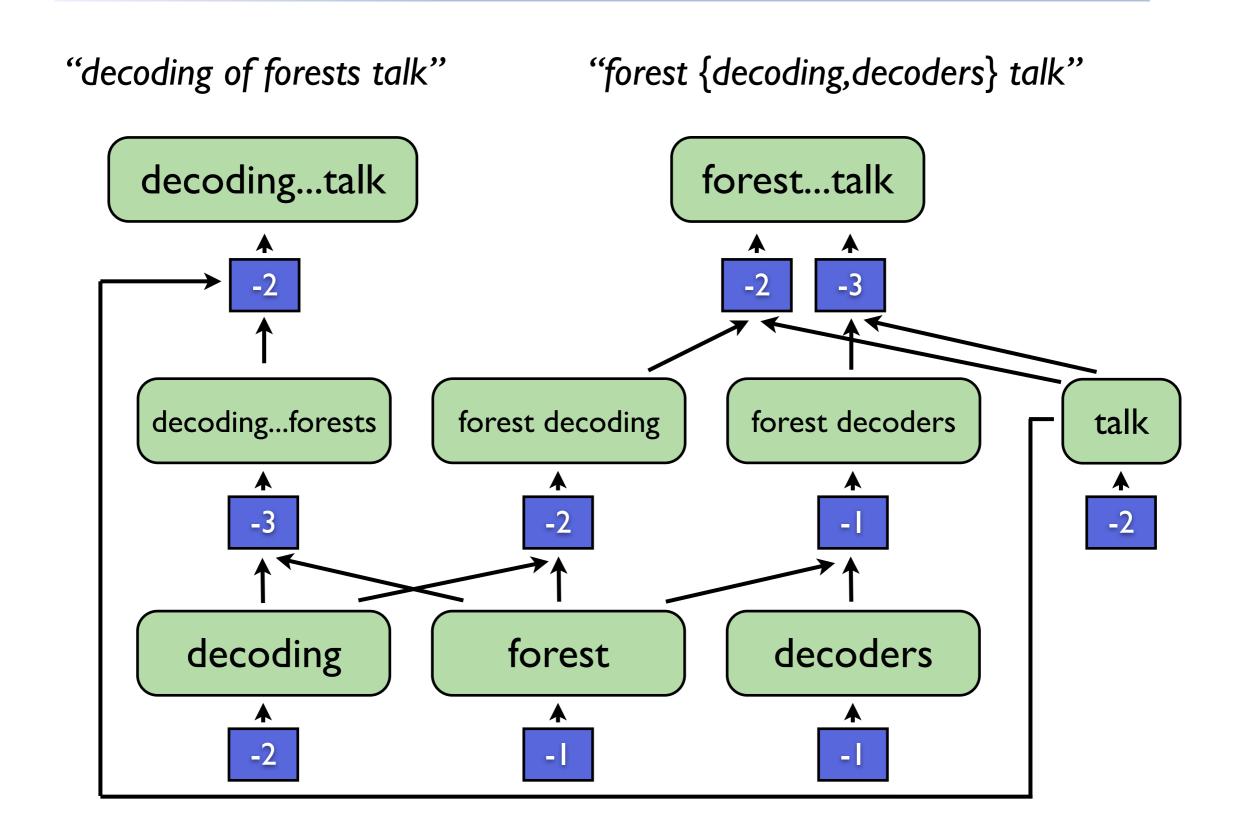
$$O(k) + O(k)$$

Consensus Search

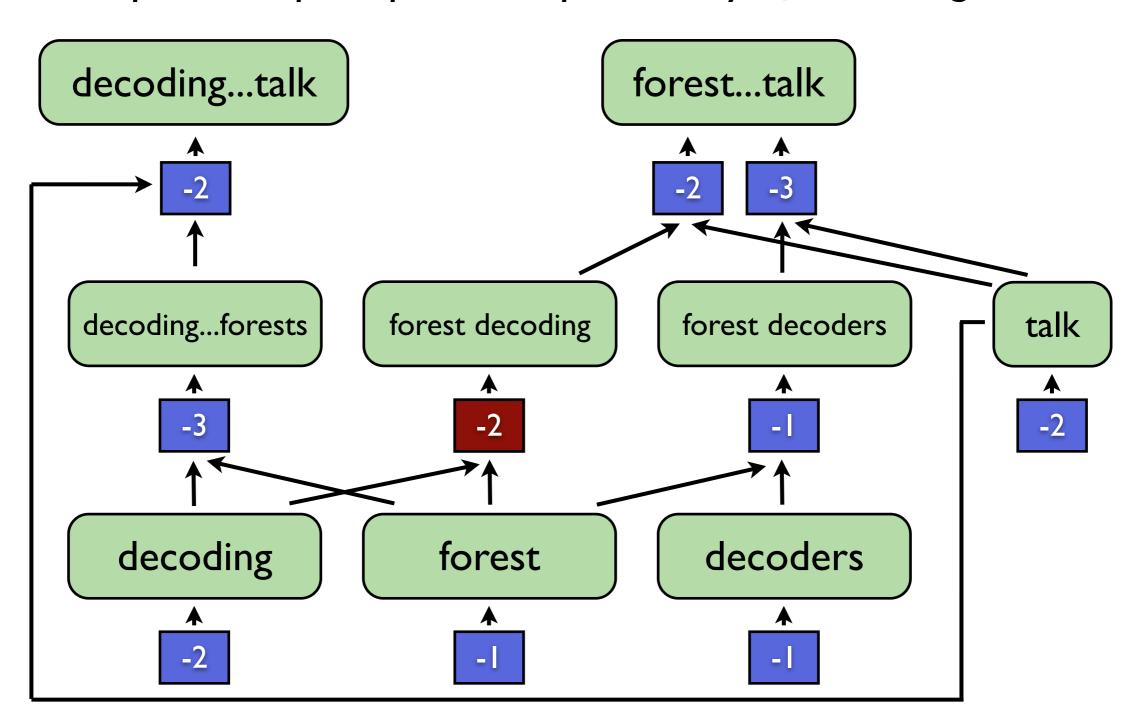
decoding talk

forest talk

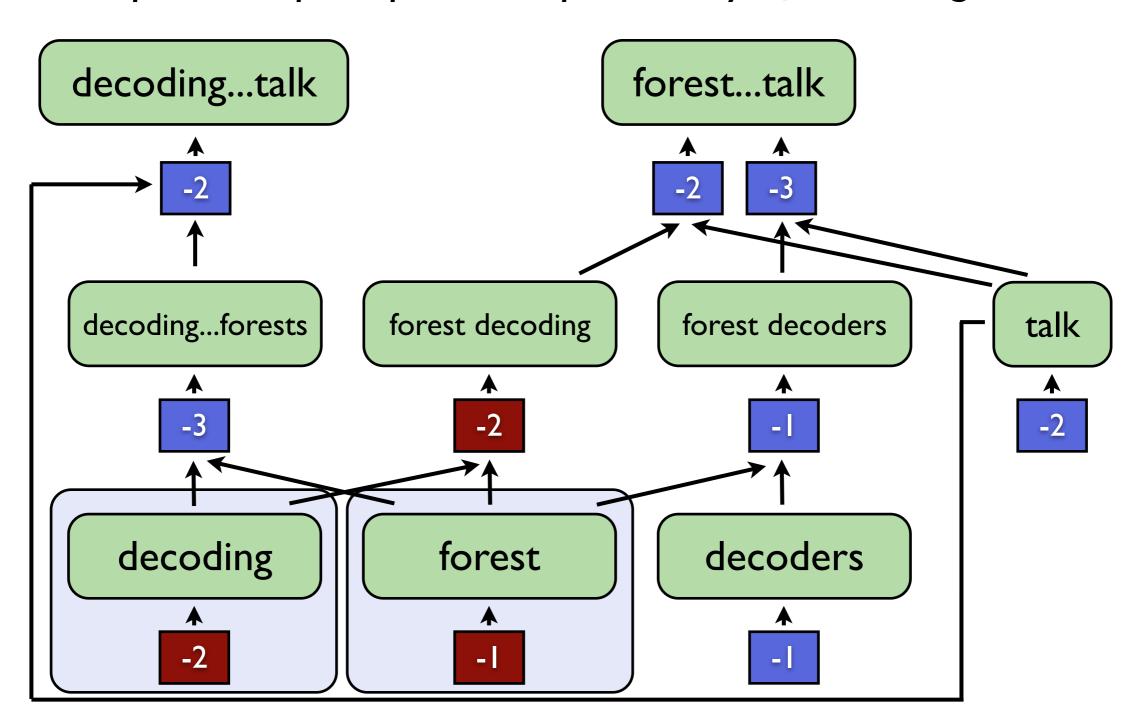




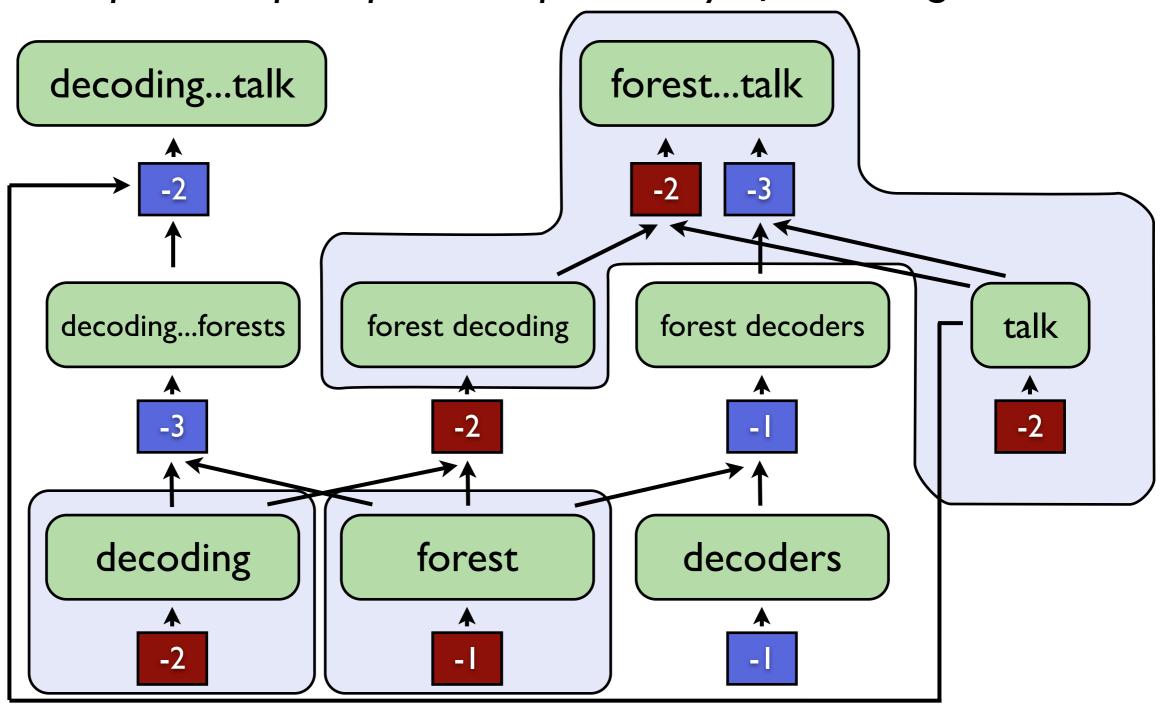
Step 1: Compute posterior probability of each edge



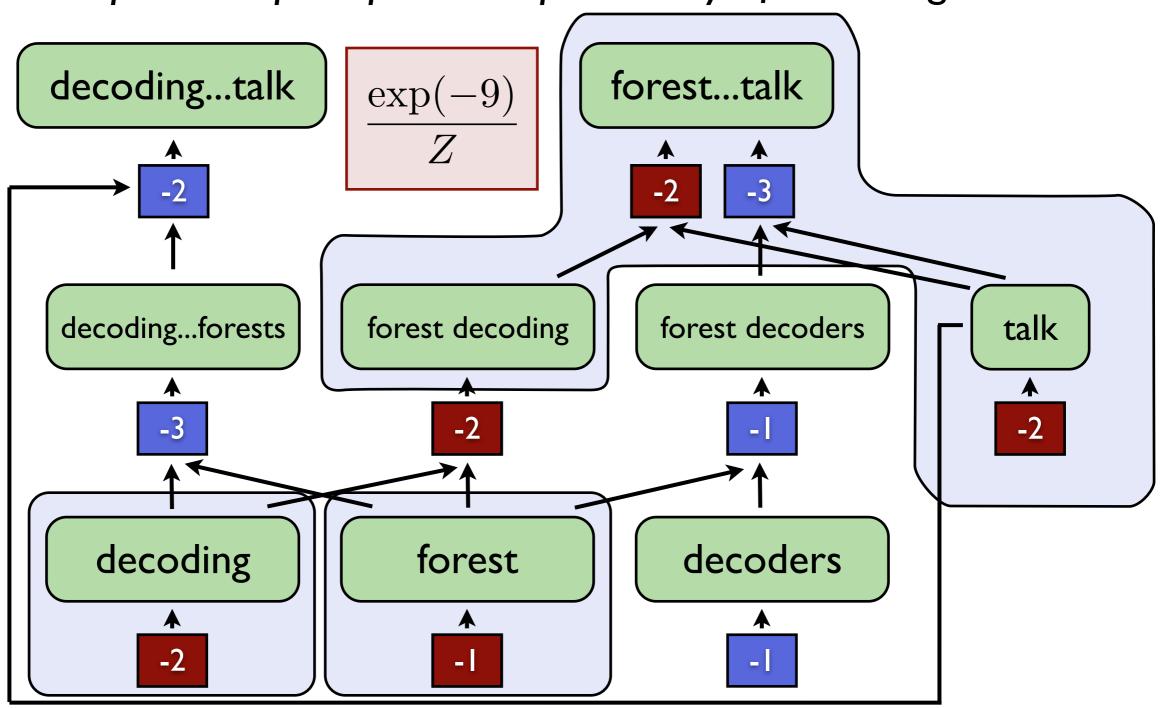
Step 1: Compute posterior probability of each edge



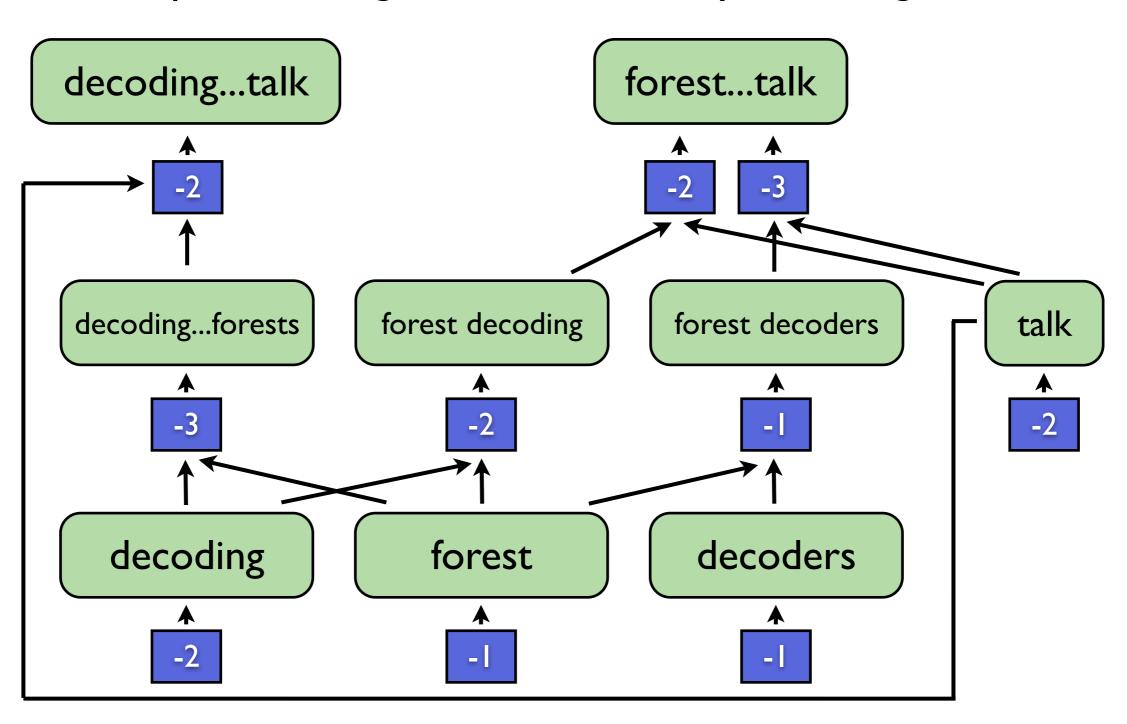
Step 1: Compute posterior probability of each edge



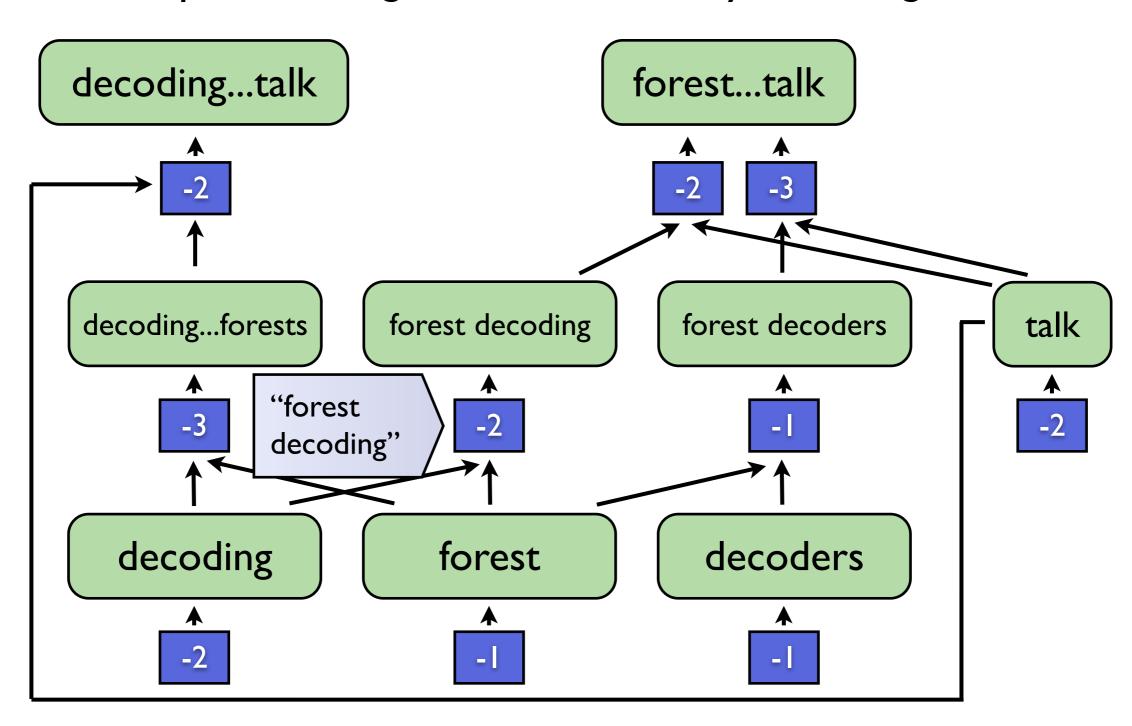
Step 1: Compute posterior probability of each edge



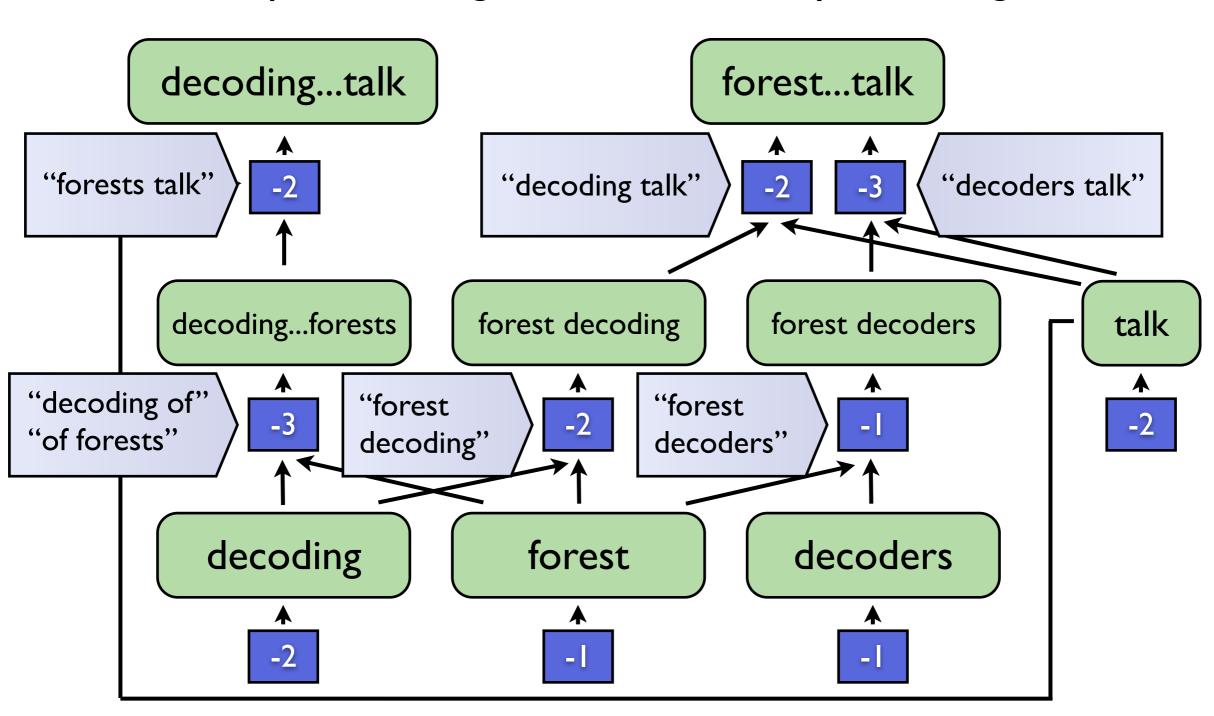
Step 2: Find n-grams introduced by each edge



Step 2: Find n-grams introduced by each edge



Step 2: Find n-grams introduced by each edge



If features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$

If features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$

If features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$
 "forest decoding"

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest

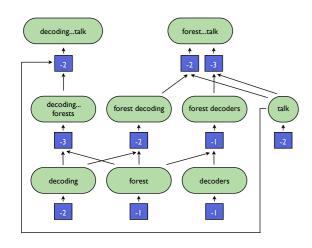
Compute Edge Posteriors Extract K-Best

Find Edge N-Grams Expected N-Gram Counts

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest

Compute Edge Posteriors Extract K-Best

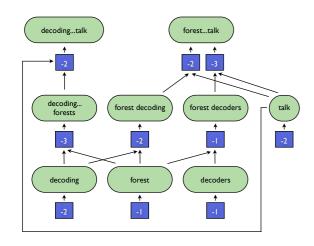


Find Edge N-Grams Expected N-Gram Counts

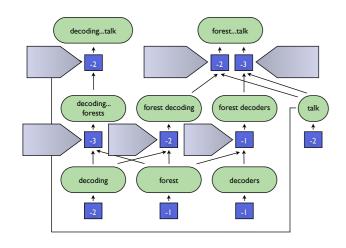
$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest

Compute Edge Posteriors Extract K-Best



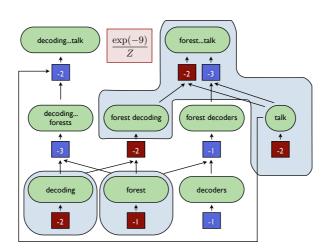
Find Edge N-Grams Expected N-Gram Counts



$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest

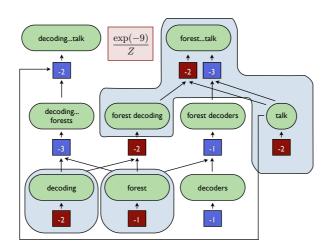
Compute Edge Posteriors Extract K-Best



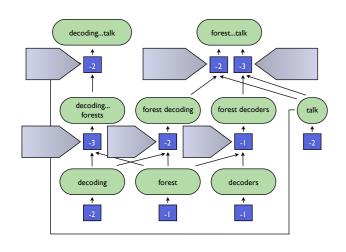
Find Edge N-Grams Expected N-Gram Counts

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest



Find Edge N-Grams



Expected N-Gram Counts

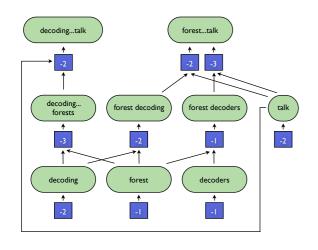
"forest decoding" 0.7

"decoding talk" 0.6

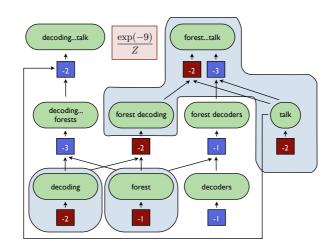
"decoders talk" 0.4

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest



Compute Edge Posteriors



Extract K-Best

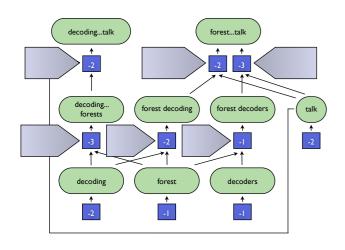
Lazy k-best extraction [Huang and Chiang '05]

ei: forest decoders talk

e2: forest decoding talk

• • •

Find Edge N-Grams



Expected N-Gram Counts

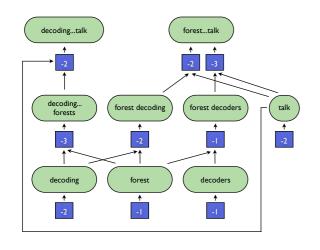
"forest decoding" 0.7

"decoding talk" 0.6

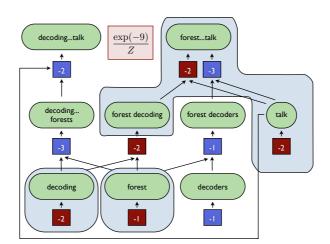
"decoders talk" 0.4

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

Build a Forest



Compute Edge Posteriors



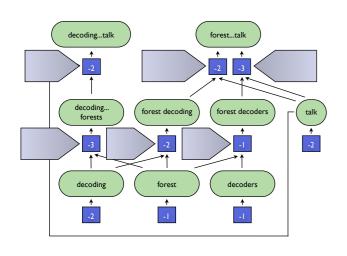
Extract K-Best

Lazy k-best extraction [Huang and Chiang '05]

- ei: forest decoders talk
- e₂: forest decoding talk

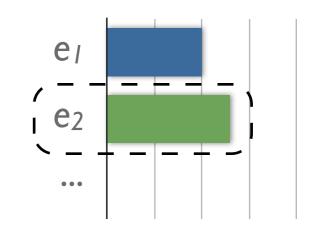
• •

Find Edge N-Grams



Expected N-Gram Counts

"forest decoding"	0.7
"decoding talk"	0.6
"decoders talk"	0.4



Systems Used for Experiments

Hierarchical Phrase-Based Translation (Hiero)

- Hiero rules and decoding [Chiang, '05]
- MIRA tuning with standard, syntactic, and fine-grained distortion features [Chiang et al., '08]

Syntax-Based Machine Translation (SBMT)

- Tree-transducer rules with no limit on non-terminal count
- Rules extracted via a variety of procedures [Galley et al., '06; Marcu et al., '06; DeNeefe et al., '07]
- Tuning via MERT (Arabic-English) and MIRA (Chinese-English)

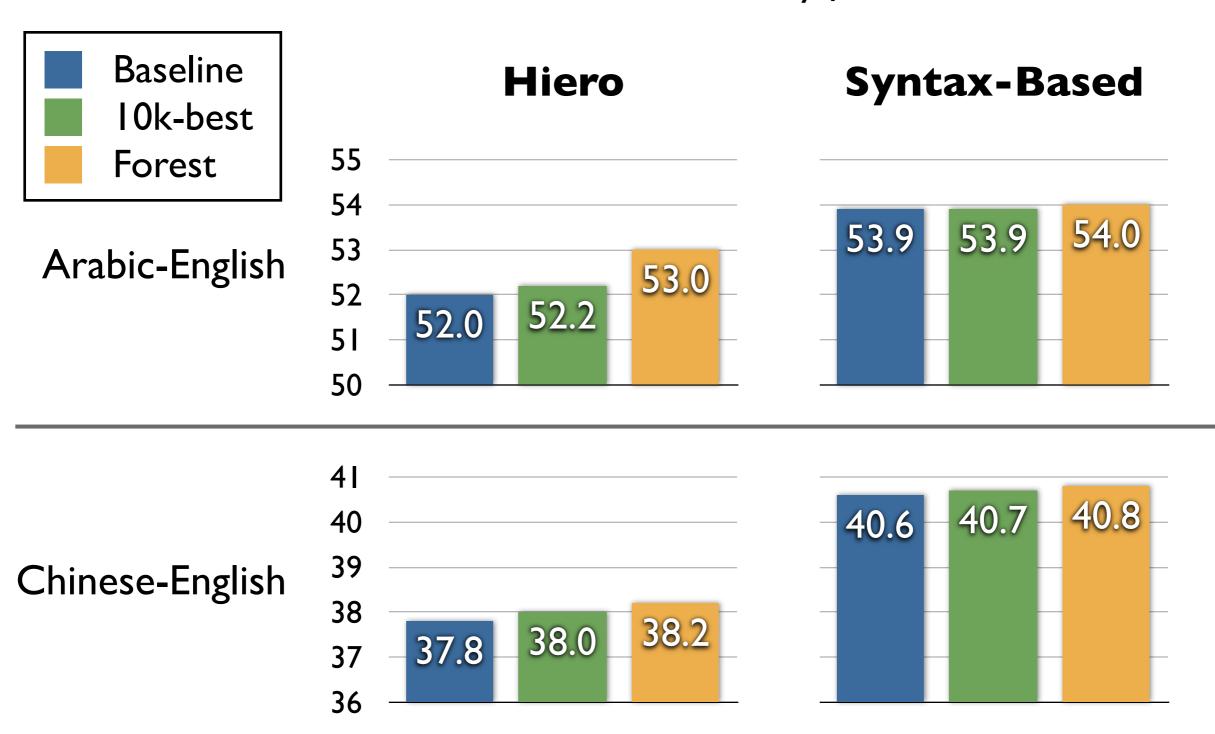
Data Conditions

Tuning and test sets drawn from NIST 2004 and 2005

	Hiero	Syntax-Based
Arabic-English	 220 million word bitext 	220 million word bitext
	 2 billion word language model 	 2 billion word language model
Chinese-English	 260 million word bitext 	65 million word bitext
	 2 billion word language model 	 I billion word language model

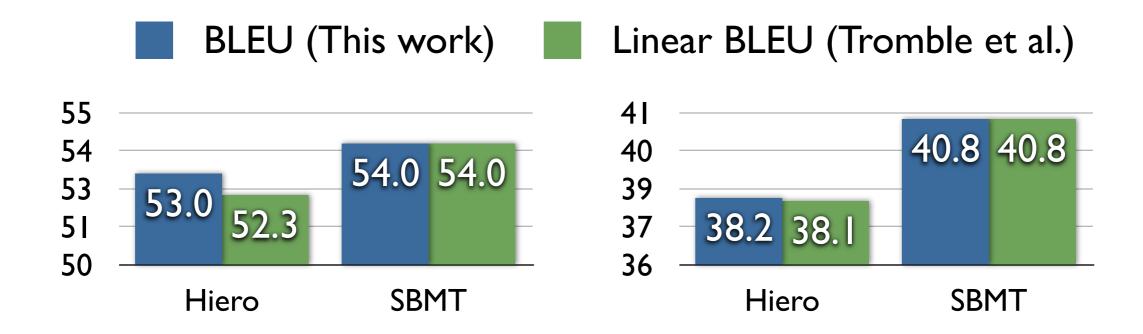
Fast Consensus Decoding Results

All results use BLEU as a similarity function



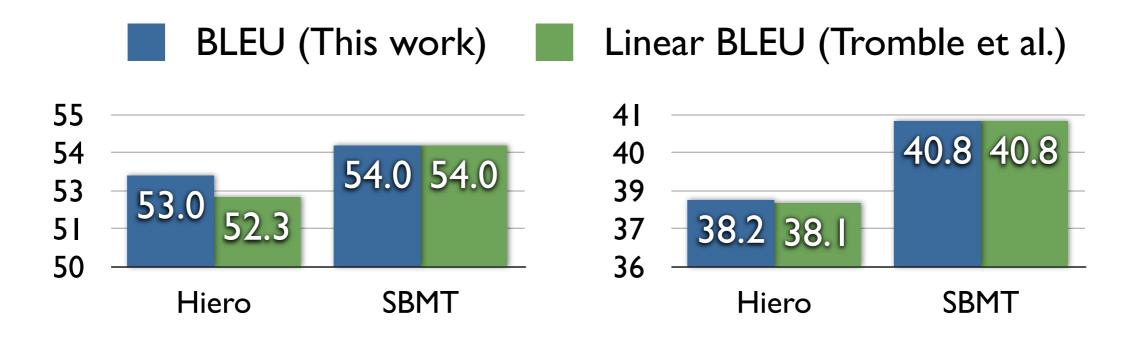
Relationship to Recent & Concurrent Work

- Tromble et al., EMNLP '08
 - Linear approximation to BLEU for lattice MBR



Relationship to Recent & Concurrent Work

- Tromble et al., EMNLP '08
 - Linear approximation to BLEU for lattice MBR



- Kumar et al., ACL '09
 - Improved linear approx. to BLEU and over forests
- Li et al., ACL '09
 - Linear objective over forests; different motivation

Training for Consensus Decoding

Decoding objective:

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

The model score's role is to compute n-gram expectations

Training for Consensus Decoding

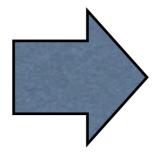
Decoding objective:

$$\arg\max_{e} \mathrm{BLEU}(e; \mathbb{E}[\phi(e')])$$

The model score's role is to compute n-gram expectations

Max-BLEU (MERT):

Maximize BLEU of the model-best derivation



CoBLEU (Gradient):

Maximize expectations of reference n-grams

Consensus Training for Consensus Decoding

Adam Pauls, John DeNero, & Dan Klein EMNLP '09

Conclusion

- Fast consensus decoding is efficient with nonlinear similarity functions
- Equivalent to MBR for linear similarity functions
- 80x speed increase over MBR with 1000-best lists (using BLEU for similarity)
- Improvements of up to 1.0 BLEU over model-best

Thanks!

Questions?

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Inside-outside computes hyperedge posteriors

$$P(h|f) = \sum_{e':h\in e'} P(e'|f)$$

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Inside-outside computes hyperedge posteriors

$$P(h|f) = \sum_{e':h\in e'} P(e'|f)$$

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Inside-outside computes hyperedge posteriors

$$P(h|f) = \sum_{e':h\in e'} P(e'|f)$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Inside-outside computes hyperedge posteriors

$$P(h|f) = \sum_{e':h\in e'} P(e'|f)$$

$$= \sum_{e':h\in e'} \frac{\exp(-9)}{Z}$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$

Assume features are local to hyperedges

$$\phi(e') = \sum_{h \in e} \phi(h)$$

Definition of an expectation

$$\mathbb{E}\left[\phi(e')\right] = \sum_{e'} P(e'|f) \sum_{h \in e'} \phi(h)$$

Inside-outside computes hyperedge posteriors

$$P(h|f) = \sum_{e':h\in e'} P(e'|f)$$

$$\mathbb{E}\left[\phi(e')\right] = \sum_{h} P(h|f) \cdot \phi(h)$$
 "forest decoding"