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Overview

Minimum Bayes risk (MBR) decoding tends to
improve over model-best (Viterbi) decoding

With a linear loss function, MBR is efficient

Our variant, fast consensus decoding, is efficient
even with non-linear loss functions (e.g., BLEU)



The Minimum Bayes Risk Objective

MT models induce posterior 1 3
distributions over outputs P(elf) = 7 exp( A



The Minimum Bayes Risk Objective

MT models induce posterior 1 T -
distributions over outputs P(elf) = 7 exp( A-gle, f) )
Minimizing Bayes risk R(e) —1_ {’P(e’\f) [S(e; 6,)]



The Minimum Bayes Risk Objective

distributions over outputs

MT models induce posterior 1 >
P Plelf) = - exp( X~ Fle, f) )

Minimizing Bayes risk R(e) _1_ ":P( ) [S(e’ 6/)]

Sentence similarity evaluation measure (e.g., BLEU) _/



The Minimum Bayes Risk Objective

distributions over outputs

MT models induce posterior 1 >
P Plelf) = - exp( X~ Fle, f) )

Minimizing Bayes risk R(e) _1_ ":P( ) [S(e’ 6/)]

Our model’s posterior distribution —J

Sentence similarity evaluation measure (e.g., BLEU) _/



The Minimum Bayes Risk Objective
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P Plelf) = - exp( X~ Fle, f) )
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The Minimum Bayes Risk Objective

MT models induce posterior
distributions over outputs

Minimizing Bayes risk ==
Maximizing expected similarity
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E.g., Unigram Precision:
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Fast Consensus Decoding with BLEU

Arg max BLEU(e; E[¢(e')])

= argmax (Expected n-gram counts)
(&

(1 E[ || ] ) Zl D _ter, min(c(e, t), B [c(e’, 1)])

exp
_ el 2_ter, (& 1)
Length penalty computed N-gram counts are
relative to the expected clipped by the expected
length of the output count of each n-gram

On 1000-best lists:

80 times faster than MBR with nearly identical improvements
(within 0.1 BLEU in all test conditions)
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Systems Used for Experiments

Hierarchical Phrase-Based Translation (Hiero)

® Hiero rules and decoding [Chiang, '05]

e MIRA tuning with standard, syntactic, and fine-grained
distortion features [Chiang et al., ’08]

Syntax-Based Machine Translation (SBMT)

e TJree-transducer rules with no limit on non-terminal count

 Rules extracted via a variety of procedures [Galley et al., ’06;
Marcu et al.,’06; DeNeefe et al.,’07]

® Tuning via MERT (Arabic-English) and MIRA (Chinese-English)



Data Conditions

Tuning and test sets drawn from NIST 2004 and 2005

Arabic-English

Hiero

¢ 220 million
word bitext

* 2 billion word
language model

Syntax-Based

¢ 220 million
word bitext

* 2 billion word
language model

Chinese-English

¢ 260 million
word bitext

* 2 billion word
language model

¢ 65 million
word bitext

* | billion word
language model



Fast Consensus Decoding Results

All results use BLEU as a similarity function

B Baseline Hiero Syntax-Based
" 10k-best
Forest 25
54

Arabic-English >3

Ly J— 55:0 L
50

4]
40
39
38 -
N 7.5 |l 38.0 @SS

36

Chinese-English
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Relationship to Recent & Concurrent Work

e Tromble et al., EMNLP ’08

® |inear approximation to BLEU for lattice MBR

B BLEU (This work) [ Linear BLEU (Tromble et al.)

55 4|

- 54.0 54.0 I U 102
53.0

5 52.3 37

50 36

Hiero SBMT Hiero SBMT

e Kumar etal., ACL 09

® |mproved linear approx. to BLEU and over forests
e Lietal, ACL’09

e Linear objective over forests; different motivation
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Training for Consensus Decoding

Decoding objective: arg max BLEU(e; Elo(e)])

The model score’s role is to

compute n-gram expectations
- J

Max-BLEU (MERT):
Maximize BLEU of the
model-best derivation

CoBLEU (Gradient):

Maximize expectations of
reference n-grams

Consensus Training for Consensus Decoding
Adam Pauls, John DeNero, & Dan Klein
EMNLP 09



Conclusion

Fast consensus decoding is efficient with non-
linear similarity functions

Equivalent to MBR for linear similarity functions

80x speed increase over MBR with 1000-best lists
(using BLEU for similarity)

Improvements of up to 1.0 BLEU over model-best
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