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Overview

¥ Minimum Bayes risk (MBR) decoding tends to 
improve over model-best (Viterbi) decoding

¥ With a linear loss function, MBR is efÞcient

¥ Our variant, fast consensus decoding, is efÞcient 
even with non-linear loss functions (e.g., BLEU)



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs P(e|f ) =

1
Z

exp
!

!" á!# (e, f )
"



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs P(e|f ) =

1
Z

exp
!

!" á!# (e, f )
"

Minimizing Bayes risk R(e) = 1 ! EP (e! |f ) [S(e; e!)]



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Sentence similarity evaluation measure (e.g., BLEU)

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

Minimizing Bayes risk R(e) = 1 ! EP (e! |f ) [S(e; e!)]



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Sentence similarity evaluation measure (e.g., BLEU)

Our modelÕs posterior distribution

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

Minimizing Bayes risk R(e) = 1 ! EP (e! |f ) [S(e; e!)]



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Sentence similarity evaluation measure (e.g., BLEU)

Our modelÕs posterior distribution

Flip sign to get ÒlossÓ

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

Minimizing Bayes risk R(e) = 1 ! EP (e! |f ) [S(e; e!)]



The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Minimizing Bayes risk == 
Maximizing expected similarity

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

R(e) = 1 ! EP (e! |f ) [S(e; e!)]



Dramatization

Points:
  Translations

Size:   
  Posterior
Distance:
  Similarity

The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Minimizing Bayes risk == 
Maximizing expected similarity

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

R(e) = 1 ! EP (e! |f ) [S(e; e!)]



Dramatization

Points:
  Translations

Size:   
  Posterior
Distance:
  Similarity

The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Minimizing Bayes risk == 
Maximizing expected similarity

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

R(e) = 1 ! EP (e! |f ) [S(e; e!)]



Dramatization

Points:
  Translations

Size:   
  Posterior
Distance:
  Similarity

The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Minimizing Bayes risk == 
Maximizing expected similarity

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

R(e) = 1 ! EP (e! |f ) [S(e; e!)]



Dramatization

Points:
  Translations

Size:   
  Posterior
Distance:
  Similarity

The Minimum Bayes Risk Objective

MT models induce posterior 
distributions over outputs

Minimizing Bayes risk == 
Maximizing expected similarity

E.g., Unigram Precision:

Number of word types in e and eÕ

Number of word types in e

P(e|f ) =
1
Z

exp
!

!" á!# (e, f )
"

R(e) = 1 ! EP (e! |f ) [S(e; e!)]



Maximizing Expected Similarity over K-Best Lists



Maximizing Expected Similarity over K-Best Lists

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :



Maximizing Expected Similarity over K-Best Lists

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

exp
!

!" á!# (e, f )
"

Z



Maximizing Expected Similarity over K-Best Lists

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :

Compute K2 Pairwise Similarities

3/3 1/2 0/2

1/3 2/2 1/2

0/3 1/2 2/2

Hypotheses

R
ef

er
en

ce
s e1

e2

e3

e1 e2 e3

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

exp
!

!" á!# (e, f )
"

Z



Maximizing Expected Similarity over K-Best Lists

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :

Compute K2 Pairwise Similarities

3/3 1/2 0/2

1/3 2/2 1/2

0/3 1/2 2/2

Hypotheses

R
ef

er
en

ce
s e1

e2

e3

e1 e2 e3

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

exp
!

!" á!# (e, f )
"

Z

Max over Expectations

0.45

0

0

0

0.65

0

0

0

0.50e1

e2

e3

!

e!

S(e; e!)áP(e!|f )



Maximizing Expected Similarity over K-Best Lists

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :

Compute K2 Pairwise Similarities

3/3 1/2 0/2

1/3 2/2 1/2

0/3 1/2 2/2

Hypotheses

R
ef

er
en

ce
s e1

e2

e3

e1 e2 e3

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

exp
!

!" á!# (e, f )
"

Z

Max over Expectations

0.45

0

0

0

0.65

0

0

0

0.50e1

e2

e3

!

e!

S(e; e!)áP(e!|f )



Restricted Families of Similarity Functions

Form Examples

Sentence-level 
similarity functions TER, METEORS(e; e!)



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions TER, METEORS(e; e!)



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions TER, METEOR

BLEU:

exp

[(
1 !

|e!|
|e|

)

"
+

1
4

4∑

n =1

ln

∑
t # Tn

min(c(e, t), c(e!, t))
∑

t # Tn
c(e, t)

]

S(e; e!)



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions TER, METEOR

BLEU:

exp

[(
1 !

|e!|
|e|

)

"
+

1
4

4∑

n =1

ln

∑
t # Tn

min(c(e, t), c(e!, t))
∑

t # Tn
c(e, t)

]

S(e; e!)

Features          are counts of n-grams in eÕ! (e!)



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions

S(e; e!) TER, METEOR

Linear functions 
of features

Unigram 
Precision! (e) · " (e!)



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions

S(e; e!) TER, METEOR

Linear functions 
of features

Unigram 
Precision! (e) · " (e!)

Unigram 
Precision: !

t ! T1

"
! (t, e)
| { e} |

#
á! (t, e")

unique word 
types in e



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions

S(e; e!) TER, METEOR

Linear functions 
of features

Unigram 
Precision! (e) · " (e!)

! t (e′)Unigram 
Precision: !

t ! T1

"
! (t, e)
| { e} |

#
á! (t, e")

unique word 
types in e



Restricted Families of Similarity Functions

Form Examples

Feature-based 
similarity functions S(e; ! (e!)) BLEU, NIST

Sentence-level 
similarity functions

S(e; e!) TER, METEOR

Linear functions 
of features

Unigram 
Precision! (e) · " (e!)

! t (e)
! t (e′)Unigram 

Precision: !

t ! T1

"
! (t, e)
| { e} |

#
á! (t, e")

unique word 
types in e



Fast Expected Similarity for Linear Functions

Linear functions of local features: S(e; e!) = ! (e) á" (e!)



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

S(e; e!) = ! (e) á" (e!)



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

S(e; e!) = ! (e) á" (e!)

Ee′|f [S(e; e!)] = Ee′|f [! (e) á" (e!)] = ! (e) áE [" (e!)]



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

Maximizing expected similarity equals: arg max
e

S(e; E [φ(e!)])

S(e; e!) = ! (e) á" (e!)

Ee′|f [S(e; e!)] = Ee′|f [! (e) á" (e!)] = ! (e) áE [" (e!)]



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

Maximizing expected similarity equals: arg max
e

S(e; E [φ(e!)])

Average sentence 
in feature space

S(e; e!) = ! (e) á" (e!)

Ee′|f [S(e; e!)] = Ee′|f [! (e) á" (e!)] = ! (e) áE [" (e!)]



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

Maximizing expected similarity equals: arg max
e

S(e; E [φ(e!)])

Similarity to the 
average sentence

Average sentence 
in feature space

S(e; e!) = ! (e) á" (e!)

Ee′|f [S(e; e!)] = Ee′|f [! (e) á" (e!)] = ! (e) áE [" (e!)]



Fast Expected Similarity for Linear Functions

Linear functions of local features:

Linearity of expectations: EP (X ) [c áX ] = c áEP (X ) [X ]

Maximizing expected similarity equals: arg max
e

S(e; E [φ(e!)])

Points:
  
Size:   
 
Star:
 E [! (e)]

! (e)

P(e|f )

Similarity to the 
average sentence

Average sentence 
in feature space

S(e; e!) = ! (e) á" (e!)

Ee′|f [S(e; e!)] = Ee′|f [! (e) á" (e!)] = ! (e) áE [" (e!)]



Fast Consensus Decoding over K-Best Lists

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

exp
!

!" á!# (e, f )
"

Z

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :



Fast Consensus Decoding over K-Best Lists

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

Computed Feature Expectations

forest
forests

decoding
decoders

of

e1 e2 e3

0
1
1
0
1

1
0
1
0
0

1
0
0
1
0

0.6
0.4
0.7
0.3
0.4

E [! (e!)]

exp
!

!" á!# (e, f )
"

Z

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :



Fast Consensus Decoding over K-Best Lists

Exponentiate & Normalize

30%

30%

40%
e1

e2

e3

Computed Feature Expectations

forest
forests

decoding
decoders

of

e1 e2 e3

0
1
1
0
1

1
0
1
0
0

1
0
0
1
0

0.6
0.4
0.7
0.3
0.4

E [! (e!)]

Max over Similarities

0.45

0

0

0

0.65

0

0

0

0.50e1

e2

e3

S(e; E [! (e!)])

exp
!

!" á!# (e, f )
"

Z

Decode to Create a K-Best List

decoding of forests
forest decoding
forest decoders

-0.22
-0.51
-0.51

e1 :
e2 :

e3 :



Fast Consensus Decoding with BLEU

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding with BLEU

arg max
e

BLEU( e; E[φ(e!)])

Expected n-gram counts



Fast Consensus Decoding with BLEU

arg max
e

BLEU( e; E[φ(e!)])

= arg max
e

exp

! "
1 !

E [ |e!| ]
|e|

]
#

"
+

1
4

4$

n =1

ln

%
t # Tn

min(c(e, t), E [c(e!, t)])
%

t # Tn
c(e, t)

&

Length penalty computed 
relative to the expected 

length of the output

N-gram counts are 
clipped by the expected 
count of each n-gram

Expected n-gram counts



Fast Consensus Decoding with BLEU

arg max
e

BLEU( e; E[φ(e!)])

= arg max
e

exp

! "
1 !

E [ |e!| ]
|e|

]
#

"
+

1
4

4$

n =1

ln

%
t # Tn

min(c(e, t), E [c(e!, t)])
%

t # Tn
c(e, t)

&

Length penalty computed 
relative to the expected 

length of the output

N-gram counts are 
clipped by the expected 
count of each n-gram

On 1000-best lists: 
80 times faster than MBR with nearly identical improvements

(within 0.1 BLEU in all test conditions)

Expected n-gram counts



Consensus Decoding Algorithm Landscape

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])

Not applicableO
!
k2"



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])

Not applicableO
!
k2"

O(k) + O(k)
ConsensusSearch

O
!
k2"



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])

Objectives are equivalent

O(k) + O(k)
ConsensusSearch

Not applicableO
!
k2"

O(k) + O(k)
ConsensusSearch

O
!
k2"



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])

Objectives are equivalent

O(k) + O(k)
ConsensusSearch

Not applicableO
!
k2"

O(k) + O(k)
ConsensusSearch

O
!
k2"

Consensus

ConsensusSearch



Consensus Decoding Algorithm Landscape

Feature-based 
similarity functions

S(e; ! (e!))

Sentence-level 
similarity functions

Linear functions 
of features

! (e) · " (e!)F
am

ili
es

 o
f 

S
im

ila
rit

ie
s

Expected Similarity 
(min. Bayes risk) Fast Consensusvs

arg max
e

E [S(e; e!)] S (e; E [! (e! )])

Objectives are equivalent

O(k) + O(k)
ConsensusSearch

Not applicableO
!
k2"

O(k) + O(k)
ConsensusSearch

O
!
k2"

Consensus

ConsensusSearch

Search



forest...talkdecoding...talk

N-gram Expectations from Forests



forest...talkdecoding...talk

N-gram Expectations from Forests

forest...talkdecoding...talk

talk

decoding forest decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

-2 -3-2



forest...talkdecoding...talk

N-gram Expectations from Forests

forest...talkdecoding...talk

talk

decoding forest decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

-2 -3-2

Òdecoding of forests talkÓ Òforest {decoding,decoders} talkÓ



N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Step 1: Compute posterior probability of each edge

-2



N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Step 1: Compute posterior probability of each edge

-2 -1

-2



    

N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Step 1: Compute posterior probability of each edge

-2

-2

-2 -1

-2



    

N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Step 1: Compute posterior probability of each edge

-2

-2

-2 -1

-2

exp(! 9)
Z



N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Step 2: Find n-grams introduced by each edge



N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Òforest 
decodingÓ

Step 2: Find n-grams introduced by each edge



N-gram Expectations from Forests

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...forests forest decoders

-1-2-3

decoding...talk

-2 -3-2

Òforest 
decodingÓ

Òdecoding talkÓ Òdecoders talkÓ

Òdecoding ofÓ
Òof forestsÓ

Òforests talkÓ

Òforest 
decodersÓ

Step 2: Find n-grams introduced by each edge



Forest-Based Expectations of Local Features

Hyperedge posteriors 
give feature expectations

E [φ(e!)] =
!

h

P(h|f ) áφ(h)

If features are local 
to hyperedges

! (e!) =
!

h" e

! (h)



Forest-Based Expectations of Local Features

Hyperedge posteriors 
give feature expectations

E [φ(e!)] =
!

h

P(h|f ) áφ(h)

If features are local 
to hyperedges

! (e!) =
!

h" e

! (h)

exp(! 9)
Z



Forest-Based Expectations of Local Features

Hyperedge posteriors 
give feature expectations

E [φ(e!)] =
!

h

P(h|f ) áφ(h)

If features are local 
to hyperedges

! (e!) =
!

h" e

! (h)

Òforest 
decodingÓ

exp(! 9)
Z



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

    talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

exp(! 9)
Z

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2
0.7
0.6
0.4

Òforest decodingÓ
Òdecoding talkÓ
Òdecoders talkÓ

... ...

    talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

exp(! 9)
Z

arg max
e

BLEU( e; E[φ(e!)])



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2
0.7
0.6
0.4

Òforest decodingÓ
Òdecoding talkÓ
Òdecoders talkÓ

... ...

    talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

exp(! 9)
Z

arg max
e

BLEU( e; E[φ(e!)])

forest decoders talk
forest decoding talk

Lazy k-best extraction 
[Huang and Chiang Õ05]

e1:
e2:
...



Fast Consensus Decoding over Forests

Build a Forest

Find Edge N-Grams

Compute Edge Posteriors

Expected N-Gram Counts Maximize BLEU

Extract K-Best

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2
0.7
0.6
0.4

Òforest decodingÓ
Òdecoding talkÓ
Òdecoders talkÓ

... ...

e1

e2

...

    talk

decoding forest

forest...talk

decoders

-2 -1 -1

-2

forest decodingdecoding...
forests

forest decoders

-1-2-3

decoding...talk

-2 -3-2

exp(! 9)
Z

arg max
e

BLEU( e; E[φ(e!)])

forest decoders talk
forest decoding talk

Lazy k-best extraction 
[Huang and Chiang Õ05]

e1:
e2:
...



Systems Used for Experiments

¥ Hiero rules and decoding [Chiang, Õ05]

¥ MIRA tuning with standard, syntactic, and Þne-grained 
distortion features [Chiang et al., Õ08]

¥ Tree-transducer rules with no limit on non-terminal count

¥ Rules extracted via a variety of procedures [Galley et al., Õ06; 
Marcu et al., Õ06; DeNeefe et al., Õ07]

¥ Tuning via MERT (Arabic-English) and MIRA (Chinese-English)

Hierarchical Phrase-Based Translation (Hiero)

Syntax-Based Machine Translation (SBMT)



Data Conditions

Hiero Syntax-Based

Arabic-English

Chinese-English

¥220 million 
word bitext

¥2 billion word 
language model

¥260 million 
word bitext

¥2 billion word 
language model

¥65 million 
word bitext

¥1 billion word 
language model

¥220 million 
word bitext

¥2 billion word 
language model

Tuning and test sets drawn from NIST 2004 and 2005



Fast Consensus Decoding Results

All results use BLEU as a similarity function

Hiero Syntax-Based

Arabic-English

Chinese-English

50
51
52
53
54
55

53.0
52.252.0

54.053.953.9

36
37
38
39
40
41

38.238.037.8

40.840.740.6

Baseline
10k-best
Forest



Relationship to Recent & Concurrent Work

¥ Tromble et al.,  EMNLP Õ08

¥ Linear approximation to BLEU for lattice MBR
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Relationship to Recent & Concurrent Work

¥ Tromble et al.,  EMNLP Õ08

¥ Linear approximation to BLEU for lattice MBR

¥ Kumar et al.,  ACL Õ09

¥ Improved linear approx. to BLEU and over forests

¥ Li et al.,  ACL Õ09

¥ Linear objective over forests; different motivation
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54
55

Hiero SBMT
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52.3

54.0
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36
37
39
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41

Hiero SBMT

40.8

38.1
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Training for Consensus Decoding

arg max
e

BLEU( e; E[φ(e!)])

The model scoreÕs role is to 
compute n-gram expectations

Decoding objective:



Training for Consensus Decoding

Consensus Training for Consensus Decoding

Adam Pauls, John DeNero, & Dan Klein

EMNLP Õ09

Max-BLEU (MERT):
Maximize BLEU of the 
model-best derivation

CoBLEU (Gradient):
Maximize expectations of 

reference n-grams

arg max
e

BLEU( e; E[φ(e!)])

The model scoreÕs role is to 
compute n-gram expectations

Decoding objective:



Conclusion

¥ Fast consensus decoding is efÞcient with non-
linear similarity functions

¥ Equivalent to MBR for linear similarity functions

¥ 80x speed increase over MBR with 1000-best lists 
(using BLEU for similarity)

¥ Improvements of up to 1.0 BLEU over model-best



Thanks!

Questions?
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