Asynchronous Binarization for Synchronous Grammars

University of California

C A L
N L P

Berkeley

John DeNero, Adam Pauls, and Dan Klein { denero, adpauls, klein } @ cs.berkeley.edu

Overview

In multi-pass decoding with synchronous grammars, rule binarization can be decoupled, rather than synchronized. Each unconstrained monolingual binarization can then be optimized for the relevant stage in decoding.

Parsing Stage: Source-Side Binarization

First, we project the synchronous grammar to the source language

Next, we binarize the source-side projection (see our NAACL paper)

Then, we build a source-binarized parse forest via CKY-style parsing

Highlights of our decoder:

- Binarization is chosen to minimize the total number of grammar symbols
- Coarse-to-fine parsing uses subsets of the monolingual grammar projetion
- Forests are pruned by thresholding node max-marginals (before LM)

Reranking Stage: Target-Side Binarization

Source-side binarization is collapsed out to create an n-ary forest

The parse forest is then re-binarized for target-side gap adjacency

Derivations are reranked efficiently with an n-gram language model

